# TABLE & CHARTS OF INFECTIOUS DISEASE

**Davidson's Principles and Practice of Medicine 24th Edition** 



# Clinical examination of patients with infectious disease

#### 5 Eyes

Conjunctival petechiae
Painful red eye in uveitis
Loss of red reflex in endophthalmitis
Roth's spots in infective endocarditis
Haemorrhages and exudates
of cytomegalovirus retinitis
Choroidal lesions of tuberculosis



### 4 Head and neck

Lymphadenopathy Parotidomegaly Abnormal tympanic membranes

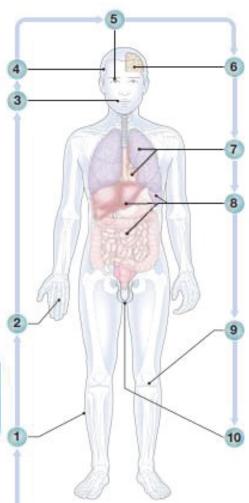
# 3 Oropharynx

Dental caries Tonsillar enlargement or exudate Candidiasis



▲ Streptococcal tonsillitis

# 2 Hands and nails


Finger clubbing Splinter haemorrhages Janeway lesions Signs of chronic liver disease Vasculitis lesions



Splinter haemorrhages in endocarditis

## 1 Skin

Generalised erythema
Rash (see opposite)
IV injection track marks
Surgical scars
Prosthetic devices, e.g. central
venous catheters
Tattoos



## Observation

- Temperature
- Sweating
- Weight loss
- Respiratory distress
- Altered consciousness
- Pallor
- Jaundice

## 6 Neurological

Neck stiffness Photophobia Delirium Focal neurological signs

## 7 Heart and lungs

Tachycardia, hypotension Murmurs or prosthetic heart sounds Pericardial rub Signs of consolidation Pleural or pericardial effusion



Chest X-ray consolidation in pneumonia

## 8 Abdomen

Hepatosplenomegaly Ascites Renal angle tenderness Localised tenderness or guarding with decreased bowel sounds, e.g. in left iliac fossa with diverticulitis Mass lesions Surgical drains

## 9 Musculoskeletal

Joint swelling, erythema or tenderness Localised tender spine suggestive of epidural abscesses or discitis Draining sinus of chronic osteomyelitis

#### 10 Genitalia and rectum

Ulceration or discharge Testicular swelling or nodules Inguinal lymphadenopathy Prostatic tenderness Rectal fluctuance



▲ Testicular swelling in adult mumps

Insets (splinter haemorrhages) Courtesy of Dr Nick Beeching, Royal Liverpool University Hospital; (Roth's spots) Courtesy of Prof. Ian Rennie, Royal Hallamshire Hospital, Sheffield.



#### Fever

#### Documentation of fever

- · 'Feeling hot' or sweaty does not necessarily signify fever - diagnosed only when a body temperature of over 38.0°C
- Axillary and aural measurement is less accurate than oral or rectal
- · Outpatients may be trained to keep a temperature chart

#### Rigors

 Shivering (followed by excessive sweating) occurs with a rapid rise in body temperature from any cause

#### Night sweats

 Associated with particular infections (e.g. TB. infective endocarditis): sweating from any cause is worse at night

#### Excessive sweating

 Alcohol, arodety, thyrotoxicosis, diabetes mellitus, acromegaly, lymphoma and excessive environmental heat all cause sweating without temperature elevation

#### Recurrent fever

 There are various causes, e.g. Borrelia recurrentis, bacterial abscess

#### Accompanying features

- Severe headache and photophobia, although characteristic of meningitis, may accompany other infections.
- Delirium during fever is more common in young children or the elderly
- Myalgia may occur with viral infections, such as influenza, and with sepsis including meningococcal sepsis
- Shock may accompany severe infections and sepsis (p. 196)

# History-taking in suspected infectious disease

#### Presenting complaint

 Diverse manifestations of infectious. disease make accurate assessment of features and duration critical; e.g. fever and cough lasting 2 days imply an acute respiratory tract infection but suggest TB if they last 2 months

#### Review of systems

Must be comprehensive

#### Past medical history

- · Define the 'host' and likelihood of infection(s)
- · Include surgical and dental procedures involving prosthetic materials
- Document previous infections

#### Medication history

- Include non-prescription drugs, use of antimicrobials and immunosuppressants
- · Identify medicines that interact with antimicrobials or that may cause fever

# Allergy history

 Esp. to antimicrobials, noting allergic manifestation (e.g. rash versus anaphylaxis)

#### Family and contact history

- Note infections and their duration
- Sensitively explore exposure to key infections, e.g. TB and HIV

#### Travel history

 Include countries visited and where previously resident (relevant to exposure and likely vaccination history, e.g. likelihood of BCG vaccination in childhood)

#### Occupation

. e.g. Anthrax in leather tannery workers

#### Recreational pursuits

e.g. Leptospirosis in canoeists and windsurfers

#### Animal exposures

Include pets, e.g. dogs/hydatid disease

#### Dietary history

- Consider under-cooked meats, shellfish, unpasteurised dairy products or well water
- · Establish who else was exposed, e.g. to food-borne pathogens

#### History of intravenous drug injection or receipt of blood products

 Risks for blood-borne viruses, e.g. HIV-1, HBV and HCV

#### Sexual history

 Explore in a confidential manner (Ch. 13); remember that the most common mode of HIV-1 transmission is heterosexual (Ch. 12)

#### Vaccination history and use of prophylactic medicines

- Consider occupation- or age-related vaccines
- In a traveller or infection-predisposed patient, establish adherence to prophylaxis

"Always consider non-infectious actiologies in the differential diagnosis. (HBV/HCV = hepatitis B/C virus; HIV-1 = human immunodeficiency virus-1; TB = tuberculosis)

#### 1) Skin lesions in infectious diseases

- Diffuse erythema, e.g. A
- · Migrating erythema, e.g. enlarging rash of erythema. migrans in Lyme disease (see Fig. 11.21, p. 256)
- · Purpuric or petechial rashes, e.g. B
- Macular or papular rashes, e.g. primary infection with HIV (see Box 12.8, p. 312)
- · Vesicular or blistering rash, e.g. C
- · Erythema multiforme (see Fig. 29.53 and Box 29.32, pp. 1264 and 1265)
- Nodules or plaques, e.g. Kaposi's sarcoma (p. 315)
- · Erythema nodosum (D) and Box 29.33, p. 1265)



Streptococcal toxic shock syndrome. Meningococcal sepsis.





Shingles.



Erythema nodosum.

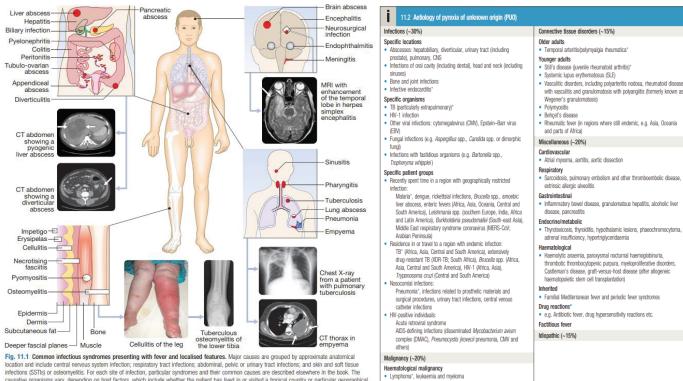



Fig. 11.1 Common infectious syndromes presenting with fever and localised features. Major causes are grouped by approximate anatomical location and include central nervous system infection; respiratory tract infections; abdominal, pelvic or urinary tract infections; and skin and soft tissue infections (SSTIs) or osteomyelitis. For each site of infection, particular syndromes and their common causes are described elsewhere in the book. The causative organisms vary, depending on host factors, which include whether the patient has lived in or visited a tropical country or particular geographical location, has acquired the infection in a health-care environment or is immunocompromised. Insets (cellulitis of the leg) Courtesy of Dr Ravi Gowda, Royal Hallamshire Hospital, Sheffield: (pulmonary tuberculosis) Courtesy of Dr Ann Chapman, Royal Hallamshire Hospital, Sheffield: (empyema, pyogenic live abscess, diverticular abscess, tuberculous osteomyelitis) Courtesy of Dr Robert Peck, Royal Hallamshire Hospital, Sheffield.

# 11.1 Fever in old age

- Temperature measurement: fever may be missed because oral temperatures are unreliable. Rectal measurement may be needed but core temperature is increasingly measured using eardrum reflectance.
- . Delirium: common with fever, especially in those with underlying cerebrovascular disease or dementia.
- Prominent causes of pyrexia of unknown origin: include tuberculosis and intra-abdominal abscesses, complicated urinary tract infection and infective endocarditis. Non-infective causes include polymyalgia rheumatica/temporal arteritis and tumours. A smaller fraction of cases remain undiagnosed than in young people.
- Pitfalls in the elderly: conditions such as stroke or thromboembolic disease can cause fever but every effort must be made to exclude concomitant infection.
- Common infectious diseases in the very frail (e.g. nursing home residents): pneumonia, urinary tract infection, soft tissue infection and gastroenteritis.



# 11.3 Clues to the diagnosis of factitious fever

A patient who looks well

Solid tumours

Renal, liver, colon, stomach, pancreas

\*Most common causes within each group.

- Bizarre temperature chart with absence of diurnal variation and/or temperature-related changes in pulse rate
- Temperature > 41°C
- Absence of sweating during defervescence
- Normal erythrocyte sedimentation rate and C-reactive protein despite high fever
- Evidence of self-injection or self-harm
- Normal temperature during supervised (observed) measurement
- Infection with multiple commensal organisms (e.g. enteric or mouth

# 11.4 Microbiological investigation of pyrexia of unknown origin

#### Location-independent investigations

- Microscopy

  Blood for atypical lymphocytes (EBV, CMV, HIV-1, hepatitis viruses or *Toxoplasma gondii*)
  Respiratory samples for mycobacteria and fungi
  Stool for ova, cysts and parasites
  Biopsy for light microscopy (bacteria, mycobacteria, fungi)

- and/or electron microscopy (viruses, protozoa (e.g. microsporidia) and other fastidious organisms (e.g. *Tropheryma*
- Urine for white or red blood cells and mycobacteria (early morning

## Culture

- spirates and biopsies (e.g. joint, deep abscess, debrided
- tissues)

   Blood, including prolonged culture and special media
- conditions
  Sputum for mycobacteria
  CSF

- Swabs
   Urine ± prostatic massage in older men

Blood, e.g. HIV p24 antigen, cryptococcal antigen. Asperaillus

- ictomannan ELISA and for *Aspergillus* and other causes of sive, fungal infection (1,3)-β-D-glucan
- invasve, rungal iniection (1,3)-p-b-glucan
  CSF for cryptococcal antigen
  Bronchoalveolar lavage fluid for *Aspergillus* galactomannan
  Nasopharyngeal aspirate/throat swab for respiratory viruses, e.g. IAV
- or RSV ne, e.g. for *Legionella* antigen

## Nucleic acid detection

- Blood for Bartonella spp. and viruses
   CSF for viruses and key bacteria (meningococcus, pneumococcus,
- Listeria monocytogenes)

  Nasopharyngeal aspirate/throat swab for respiratory viruses

- · Sputum for Mycobacterium tuberculosis (MTB) and rifampicin (RIF) resistance with geneXpert MTB/RIF cartridge-based nucleic acid amplification test
- Bronchoalveolar lavage fluid, e.g., for respiratory viruses
- Tissue specimens, e.g. for T. whipple
- Urine, e.g. for Chlamydia trachomatis, Neisseria gonorrhoeae
   Stool, e.g. for norovirus, rotavirus

# Immunological tests • Serology (antibody detection) for viruses, including HIV-1, and some

Interferon-gamma release assay for diagnosis of exposure to tuberculosis (but note this will not distinguish latent from active disease and can only be used to trigger further investigations of active

- Microscopy

  Blood for trypanosomiasis, malaria and Borrelia spp.
- Boold for hypartisconinass, maiaria and borrens spip.
   Stool for geographically restricted ova, cysts and parasites
   Biopsy for light microscopy (dimorphic fungi, Leishmania spp. and
   other parasites)
   Urine for red blood cells and schistosome ova

#### Antigen detection

 Blood, e.g. dengue virus NS1 antigen. Histoplasma antigen (restricted) availability) and malaria antigen (e.g. HRP-2 for Plasmodium falciparum or parasite-specific LDH for P. falciparum and P. vivax)

Nucleic acid detection
Blood for causes of viral haemorrhagic fever
CSF for geographically restricted viruses, e.g. Japanese encephalitis

- Nasopharyngeal aspirate/throat swab or bronchoalveolar lavage fluid for geographically restricted respiratory viruses, e.g. MERS-CoV Immunological tests

Serology (antibody detection) for viruses, dimorphic fungi and protozoa

This list does not apply to every patient with a pyrexia of unknown origin. Appropriate tests should be selected in a stepwise manner, according to specific predisposing factors, piclemiological exposures and local availability, and should be discussed with a microbiologist. \*Addition of these tests should be guided by the location of presentation or twenthe history.

(IDM = protnegationiss; CSF = ceretrospiral fluid; EBV = Epistein-Barr virus; ELSA = ercryme-linked immunosorbert assay; HW-1 = human immunodeficiency virus-1;

HRPV = Institution-inch protein 2; WV = influenza A virus; LDH = lactate dehydrogenase; MERS-CoV = Middle East respiratory syndrome coronavirus; NS1 = non-structural 1;

RSV = respiratory syndrome virus.

# i

# 11.5 Additional investigations in PUO

- Serological tests for connective tissue disorders:
   Autoantibody screen
   Complement levels
   Immunoglobulins
   Cryoglobulins
- Ferritin
- Echocardiography
- · Ultrasound of abdomen
- · CT/MRI of thorax, abdomen and/or brain
- · Imaging of the skeletal system:

Plain X-rays CT/MRI spine Isotope bone scan

- · Labelled white cell scan
- Positron emission tomography (PET)/single-photon emission computed tomography (SPECT)
- · Biopsy:

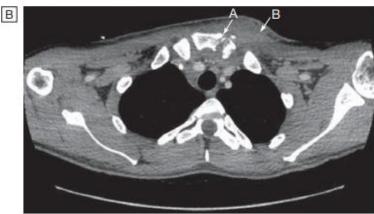
Bronchoscopy and lavage ± transbronchial biopsy

Lymph node aspirate or biopsy

Biopsy of radiological lesion

Biopsy of liver

Bone marrow aspirate and biopsy


Lumbar puncture

Laparoscopy and biopsy

Temporal artery biopsy

>6 months





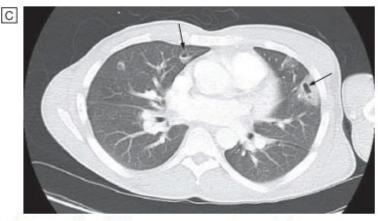



Fig. 11.3 Causes of fever in injection drug-users. A Endocarditis: large vegetation on the tricuspid valve (arrow). B Septic arthritis of the left sternoclavicular joint (arrow A) (note the erosion of the bony surfaces at the sternoclavicular joint) with overlying soft tissue collection (arrow B). C Tricuspid valve endocarditis caused by Staphylococcus aureus. Thoracic CT scan shows multiple embolic lesions with cavitation (arrows). The patient presented with haemoptysis. C, Courtesy of Dr Julia Greig, Royal Hallamshire Hospital, Sheffield.

# 11.6 Infections in transplant recipients

## Time post transplantation Infections

# Solid organ transplant recipients

0–1 month Bacterial or fungal infections related to the underlying condition or surgical

complications

1–6 months CMV, other opportunistic infections

(e.g. *Pneumocystis jirovecii* pneumonia) Bacterial pneumonia, other bacterial

community-acquired infections, shingles, cryptococcal infection, PTLD

## Myeloablative haematopoietic stem cell transplant recipients

Pre-engraftment (typically

0-4 weeks)
Post-engraftment:
Early (<100 days)

Late (>100 days)

Bacterial and fungal infections, respiratory viruses or HSV reactivation

CMV, Pneumocystis jirovecii

pneumonia, moulds or other opportunistic infections

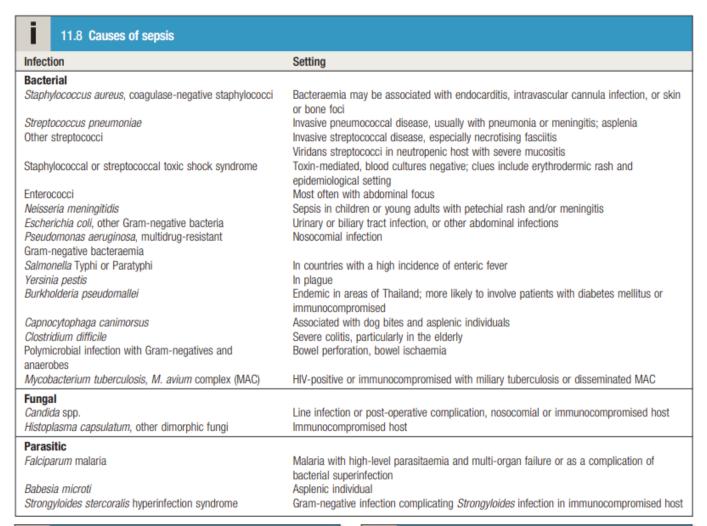
Community-acquired bacterial infections, shingles, CMV, PTLD

(CMV = cytomegalovirus; HSV = herpes simplex virus; PTLD = post-transplant lymphoproliferative disorder)

# П

#### 11.7 Common causes of blood-stream infection

#### Community-acquired


- Escherichia coli
- Staphylococcus aureus, including MRSA
- Streptococcus pneumoniae
- Other streptococci

### Nosocomial

- Staph. aureus, including MRSA
- Coagulase-negative staphylococci
- · Enterococci, including VRE
- · Gram-negative bacteria
- Candida spp.

(MRSA = meticillin-resistant Staphylococcus aureus; VRE = vancomycin-resistant enterococci)







# 11.9 Severe necrotising soft tissue infections

- Necrotising fasciitis (primarily confined to subcutaneous fascia and fat)
- Clostridial anaerobic cellulitis (confined to skin and subcutaneous tissue)
- Non-clostridial anaerobic cellulitis
- Progressive bacterial synergistic gangrene (Staphylococcus aureus + micro-aerophilic streptococcus) ('Meleney's gangrene', primarily confined to skin)
- Pyomyositis (discrete abscesses within individual muscle groups)
- Clostridial myonecrosis (gas gangrene)
- Anaerobic streptococcal myonecrosis (non-clostridial infection mimicking gas gangrene)
- Group A streptococcal necrotising myositis

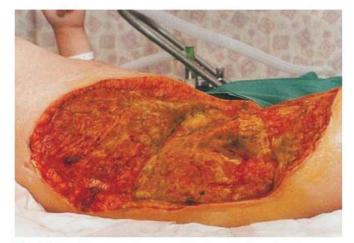



Fig. 11.4 Excision following necrotising fasciitis in an injection drug-user.



# 11.10 Causes of infectious gastroenteritis

#### Toxin in food: <6 hrs incubation

- · Bacillus cereus (p. 262)
- Staphylococcus aureus (p. 262)
- Clostridium spp. enterotoxin (p. 262)

#### Bacterial: 12-72 hrs incubation

- Enterotoxigenic Escherichia coli (ETEC, p. 263)
- Shiga toxin-producing E. coli (EHEC, p. 263)\*
- Enteroinvasive E. coli (EIEC, p. 263)\*
- Vibrio cholerae (p. 264)
- Salmonella (p. 262)
- Shigella\* (p. 265)
- · Campylobacter\* (p. 262)
- Clostridium difficile\* (p. 264)

#### Viral: short incubation

- Rotavirus (p. 249)
- Norovirus (p. 249)

#### Protozoal: long incubation

- Giardiasis (p. 287)
- Cryptosporidiosis (pp. 287 and 317)
- Microsporidiosis (p. 317)
- Amoebic dysentery (p. 286)\*
- Cystoisosporiasis (p. 233)
- \*Associated with bloody diarrhoea.



# 11.12 Infectious diarrhoea in old age

- Incidence: not increased but the impact is greater.
- Mortality: most deaths due to gastroenteritis in the developed world are in adults aged over 70. Most are presumed to be caused by dehydration leading to organ failure.
- Clostridium difficile infection (CDI): more common, especially in hospital and nursing home settings, usually following antibiotic exposure.

# 11.11 Differential diagnosis of acute diarrhoea and vomiting

#### Infectious causes

- Gastroenteritis
- Clostridium difficile infection (p. 264)
- Acute diverticulitis (p. 833)
- Sepsis (p. 196)
- Pelvic inflammatory disease (p. 336)
- Meningococcaemia (p. 1119)
- Pneumonia (especially 'atypical disease', p. 582)
- Malaria (p. 273)

#### Non-infectious causes

#### Gastrointestinal

- Inflammatory bowel disease (p. 813)
- Bowel malignancy (p. 827)

#### Metabolic

- Diabetic ketoacidosis (p. 735)
- Thyrotoxicosis (p. 635)
- Uraemia (p. 414)

#### Drugs and toxins

- NSAIDs
- Cytotoxic agents
- Antibiotics
- Proton pump inhibitors
- Dinoflagellates (p. 149)
- Plant toxins (p. 150)

- Overflow from constipation (p. 834)
- Enteral tube feeding
- Neuro-endocrine tumours releasing (e.g.) VIP or 5-HT
- · Heavy metals
- Ciguatera fish poisoning (p. 149)
- Scombrotoxic fish poisoning (p. 150)

(5-HT = 5-hydroxytryptamine, serotonin; NSAIDs = non-steroidal antiinflammatory drugs; VIP = vasoactive intestinal peptide)

| Type 1 | Separate hard<br>lumps, like nuts<br>(hard to pass)   |
|--------|-------------------------------------------------------|
| Type 2 | Sausage-shaped<br>but lumpy                           |
| Type 3 | Like a sausage but<br>with cracks on its<br>surface   |
| Type 4 | Like a sausage or<br>snake, smooth<br>and soft        |
| Type 5 | Soft blobs with<br>clear-cut edges<br>(passed easily) |
| Type 6 | Fluffy pieces with<br>ragged edges, a<br>mushy stool  |
| Type 7 | Watery, no solid<br>pieces<br>Entirely liquid         |

Fig. 11.5 Bristol stool chart. The stool is given a 'score' of 1–7 by reference to the verbal and visual description. This is recorded on a chart (usually known as a 'Bristol stool chart') or in a patient monitoring database. Adapted from Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol 1997; 32:920–924.

# 11.13 Foods associated with infectious illness, including gastroenteritis

#### Raw seafood

- Norovirus
- Vibrio spp.

# Hepatitis A

#### Raw eggs

· Salmonella serovars

#### Undercooked meat or poultry

- · Salmonella serovars
- · Campylobacter spp.
- EHEC

- Hepatitis E (pork products)
- · Clostridium perfringens
- LILO

# Unpasteurised milk or juice

- · Salmonella serovars.
- Campylobacter spp.
- EHEC
- Yersinia enterocolitica

# Unpasteurised soft cheeses

- · Salmonella serovars
- Yersinia enterocolitica
- Campylobacter spp.
  - Listeria monocytogenes
- ETEC

# Home-made canned goods

Clostridium botulinum

# Raw hot dogs, pâté

Listeria monocytogenes

(EHEC = enterohaemorrhagic Escherichia coli; ETEC = enterotoxigenic E. coli)

|              | 11.14 Composition of oral rehydration solution and other replacement fluids |     |    |        |
|--------------|-----------------------------------------------------------------------------|-----|----|--------|
| Fluid        | Na                                                                          | K   | CI | Energy |
| WH0          | 90                                                                          | 20  | 80 | 54     |
| Dioralyte    | 60                                                                          | 20  | 60 | 71     |
| Pepsi        | 6.5                                                                         | 0.8 | -  | 400    |
| 7UP          | 7.5                                                                         | 0.2 | -  | 320    |
| Apple juice  | 0.4                                                                         | 26  | -  | 480    |
| Orange juice | 0.2                                                                         | 49  | -  | 400    |
| Breast milk  | 22                                                                          | 36  | 28 | 670    |

\*Values given in mmol/L for electrolyte and kcal/L for energy components. (WHO = World Health Organisation)



# 11.15 How to assess health needs in travellers before departure

- Destination
- Personal details, including previous travel experience
- Dates of trip
- · Itinerary and purpose of trip
- Personal medical history, including pregnancy, medication and allergies (e.g. to eggs, vaccines, antibiotics)
- Past vaccinations:

Childhood schedule followed? Diphtheria, tetanus, pertussis, polio, *Neisseria meningitidis* types B/C, *Haemophilus influenzae* B (HiB)

Travel-related? Typhoid, yellow fever, hepatitis A, hepatitis B, meningococcal ACW135Y, rabies, Japanese B encephalitis, tick-borne encephalitis

 Malaria prophylaxis: questions influencing the choice of antimalarial drugs are destination, past experience with antimalarials, history of epilepsy or psychiatric illness

\*Further information is available at fitfortravel.nhs.uk.

| 11.16 How to obta                               | ain a history from travellers to the                                                                                                                                                                    |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tropics with fever                              |                                                                                                                                                                                                         |
| Questions                                       | Factors to ascertain                                                                                                                                                                                    |
| Countries visited and dates of travel           | Relate travel to known outbreaks of infection or antimicrobial resistance                                                                                                                               |
| Determine the environment visited               | Travel to rural environments, forests, rivers or lakes                                                                                                                                                  |
| Clarify where the person slept                  | Sleeping in huts, use of bed nets, sleeping on the ground                                                                                                                                               |
| Establish what he/she was doing                 | Exposure to people with medical illness, animals, soil, lakes and rivers                                                                                                                                |
| History of insect bites                         | Type of insect responsible, circumstances (location, time of day etc.), preventive measures                                                                                                             |
| Dietary history                                 | Ingestion of uncooked foods, salads<br>and vegetables, meats (especially if<br>under-cooked), shellfish, molluscs,<br>unpasteurised dairy products, unbottled<br>water and sites at which food prepared |
| Sexual history                                  | History of sexual intercourse with<br>commercial sex workers, local<br>population or travellers from other<br>countries                                                                                 |
| Malaria prophylaxis                             | Type of prophylaxis                                                                                                                                                                                     |
| Vaccination history                             | Receipt of pre-travel vaccines and appropriateness to area visited                                                                                                                                      |
| History of any treatments received while abroad | Receipt of medicines, local remedies,<br>blood transfusions or surgical<br>procedures                                                                                                                   |

|                                                   | procedures                                                                                                                                                                                     |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.17 S<br>in the tr                              | Specific exposures and causes of fever copics                                                                                                                                                  |
| Exposure                                          | Infection or disease                                                                                                                                                                           |
| Mosquito bite                                     | Malaria, dengue fever, Chikungunya, filariasis, tularaemia                                                                                                                                     |
| Tsetse fly bite                                   | African trypanosomiasis                                                                                                                                                                        |
| Tick bite                                         | Rickettsial infections including typhus, Lyme disease, tularaemia, Crimean–Congo haemorrhagio fever, Kyasanur forest disease, babesiosis, tick-borne encephalitis                              |
| Louse bite                                        | Typhus                                                                                                                                                                                         |
| Flea bite                                         | Plague                                                                                                                                                                                         |
| Sandfly bite                                      | Leishmaniasis, arbovirus infection                                                                                                                                                             |
| Reduviid bug                                      | Chagas' disease                                                                                                                                                                                |
| Animal contact                                    | Q fever, brucellosis, anthrax, plague, tularaemia, viral haemorrhagic fevers, rabies                                                                                                           |
| Fresh-water swimming                              | Schistosomiasis, leptospirosis, Naegleria fowleri                                                                                                                                              |
| Exposure to soil                                  | Inhalation: dimorphic fungi<br>Inhalation or inoculation: <i>Burkholderia</i><br><i>pseudomallei</i><br>Inoculation (most often when barefoot):<br>hookworms, <i>Strongyloides stercoralis</i> |
| Raw or<br>under-cooked<br>fruit and<br>vegetables | Enteric bacterial infections, hepatitis A or E virus,<br>Fasciola hepatica, Toxocara spp., Echinococcus<br>granulosus (hydatid disease), Entamoeba histolytica                                 |
| Under-cooked pork                                 | Taenia solium (cysticercosis)                                                                                                                                                                  |
| Crustaceans or molluscs                           | Paragonimiasis, gnathostomiasis, Angiostrongylus cantonensis infection, hepatitis A virus, cholera                                                                                             |
| Unpasteurised dairy products                      | Brucellosis, salmonellosis, abdominal tuberculosis, listeriosis                                                                                                                                |
| Untreated water                                   | Enteric bacterial infections, giardiasis,<br>Cryptosporidium spp. (chronic in<br>immunocompromised), hepatitis A or E                                                                          |

virus

#### 11.18 Incubation times and illnesses in travellers

#### <2 weeks

## Non-specific fever

- Malaria
- Chikungunya
- Dengue
- Scrub typhus
- Spotted group rickettsiae
- Acute HIV
- Acute hepatitis C virus
- Campylobacter
- Salmonellosis
- Shigellosis
- · East African trypanosomiasis
- Leptospirosis
- Relapsing fever
  - Influenza Yellow fever

#### Fever and coagulopathy (usually thrombocytopenia)

- Malaria
- Meningococcaemia
- Enteroviruses
- · Leptospirosis and other bacterial pathogens associated with coagulopathy

East African trypanosomiasis

· Other causes of encephalitis

or meningitis

 Angiostrongyliasis Rabies

#### Fever and central nervous system involvement

- Malaria
- Typhoid fever
- Rickettsial typhus (epidemic caused by Rickettsia prowazekii)
- Meningococcal meningitis
- · Arboviral encephalitis

# Fever and pulmonary involvement

- Influenza
- Pneumonia, including
- Legionella pneumonia Acute histoplasmosis
- Acute coccidioidomycosis
- Q fever
- SARS

#### Fever and rash

- Viral exanthems (rubella, measles, varicella, mumps, HHV-6, enteroviruses
- Chikungunya
- Dengue
- · Spotted or typhus group rickettsiosis
- · Typhoid fever
- Parvovirus B19
- HIV-1

#### 2-6 weeks

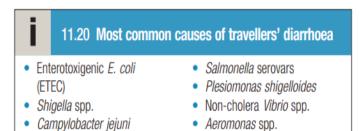
- Malaria
- Tuberculosis
- · Hepatitis A, B, C and E viruses · Q fever
- Acute schistosomiasis
- Amoebic liver abscess
- Lentospirosis
- African trypanosomiasis
- VHF
- Visceral leishmaniasis
   Acute American trypanosomiasis
  - · Viral causes of mononucleosis syndromes

# >6 weeks

- Non-falciparum malaria
- Tuberculosis
- Hepatitis B and E viruses
- HIV-1
- Visceral leishmaniasis
- Filariasis
- Onchocerciasis
- Schistosomiasis
  - · Amoebic liver abscess
- · Chronic mycoses
- African trypanosomiasis
- Rabies
- · Typhoid fever

(HHV-6 = human herpesvirus-6; SARS = severe acute respiratory syndrome; VHF viral haemorrhagic fever)

Adapted from Traveller's Health Yellow Book, CDC Health Information for International Travel 2008.


For Critical Care Treatment,



of Bangladesh

**DEDICATED CARBAPENEM PLANT** 

| Features on full blood count                       | Further investigations               |
|----------------------------------------------------|--------------------------------------|
| Neutrophil leucocytosis                            |                                      |
| Bacterial sepsis                                   | Blood culture                        |
| Leptospirosis                                      | Culture of blood and urine, serology |
| Borreliosis (tick- or louse-borne relapsing fever) | Blood film                           |
| Amoebic liver abscess                              | Ultrasound                           |
| Normal white cell count and differ                 | rential                              |
| Malaria (may have low platelets or anaemia)        | Blood film, antigen test             |
| Typhoid fever                                      | Blood and stool culture              |
| Typhus                                             | Serology                             |
| Lymphocytosis                                      |                                      |
| Viral fevers, including VHF                        | Serology, PCR                        |
| Infectious mononucleosis                           | Monospot test, serology              |
| Malaria                                            | Blood film, antigen test             |
| Rickettsial fevers                                 | Serology                             |
| Atypical lymphocytes                               |                                      |
| Dengue and other VHF                               | Serology, antigen, PCR               |
| Infectious mononucleosis-like                      | Serology, PCR                        |
| syndromes<br>HIV (acute retroviral syndrome)       | Serology, antigen                    |
| Hepatitis viruses                                  | Serology, antigen, PCR               |
| Parasitic, malaria, trypanosomiasis                | Blood film, antigen test, PCI        |



# 11.21 Causes of chronic diarrhoea acquired in the tropics

- · Giardia lamblia
- Strongyloidiasis
- Enteropathic Escherichia coli
- HIV enteropathy
- · Intestinal flukes
- Tropical sprue
- Chronic intestinal schistosomiasis
- Chronic calcific pancreatitis
- Hypolactasia (primary and secondary)

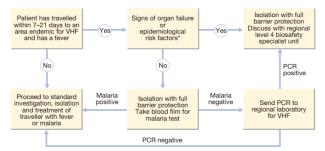



Fig. 11.6 Approach to the patient with suspected viral haemorrhagic fever (VHF). See page 245. \*Epidemiological risk factors: staying with a febrille individual, caring for a sick individual, or contact with body fluids from a suspected human or animal case of VHF. (PCR = polymerase chain reaction)

| Infestation                  | Pathogen                                                          | Clinical syndrome with eosinophilia                                                                                                                   |
|------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strongyloidiasis             | Strongyloides stercoralis                                         | Larva currens                                                                                                                                         |
| Soil-transmitted helminthias | es                                                                |                                                                                                                                                       |
| Hookworm                     | Necator americanus                                                | Anaemia                                                                                                                                               |
|                              | Ancylostoma duodenale                                             | Anaemia                                                                                                                                               |
| Ascariasis                   | Ascaris lumbricoides                                              | Löffler's syndrome                                                                                                                                    |
| Toxocariasis                 | Toxocara canis                                                    | Visceral larva migrans                                                                                                                                |
| Schistosomiasis              | Schistosoma haematobium                                           | Katayama fever                                                                                                                                        |
|                              | S. mansoni, S. japonicum                                          | Chronic infection                                                                                                                                     |
| Filariases                   |                                                                   |                                                                                                                                                       |
| Loiasis                      | Loa loa                                                           | Skin nodules                                                                                                                                          |
| Wuchereria bancrofti         | W. bancrofti                                                      | Lymphangitis, lymphadenopathy, orchitis, intermittent bouts of cellulitis, lymphoedema and elephantiasis                                              |
| Brugia malayi                | B. malayi                                                         | Brugian elephantiasis similar but typically less severe than that caused by W. bancroft                                                               |
| Mansonella perstans          | M. perstans                                                       | Asymptomatic infection, occasionally subconjunctival nodules                                                                                          |
| Onchocerciasis               | Onchocerca volvulus                                               | Visual disturbance, dermatitis                                                                                                                        |
| Other nematode infections    | Trichinella spiralis<br>Gnathostoma spinigerum                    | Myositis Pruritus, migratory nodules, eosinophilic meningitis                                                                                         |
| Cestode infections           | Taenia saginata, T. solium<br>Echinococcus granulosus             | Usually asymptomatic; eosinophilia associated with migratory phase<br>Lesions in liver or other organ; eosinophilia associated with leakage from cyst |
| Liver flukes                 | Fasciola hepatica<br>Clonorchis sinensis<br>Opisthorchis felineus | Hepatic symptoms; eosinophilia associated with migratory phase<br>As for fascioliasis<br>As for fascioliasis                                          |
| Lung fluke                   | Paragonimus westermani                                            | Lung lesions                                                                                                                                          |

| _ |
|---|
|   |
|   |
|   |
|   |
|   |

# 11.23 Initial investigation of eosinophilia

| Investigation         | Pathogens sought                                                                          |
|-----------------------|-------------------------------------------------------------------------------------------|
| Stool microscopy      | Ova, cysts and parasites                                                                  |
| Terminal urine        | Ova of Schistosoma haematobium                                                            |
| Duodenal aspirate     | Filariform larvae of <i>Strongyloides</i> , liver fluke ova                               |
| Day bloods            | Microfilariae Brugia malayi, Loa loa                                                      |
| Night bloods          | Microfilariae Wuchereria bancrofti                                                        |
| Skin snips            | Onchocerca volvulus                                                                       |
| Slit-lamp examination | Onchocerca volvulus                                                                       |
| Serology              | Schistosomiasis, filariasis, strongyloidiasis, hydatid, trichinosis, gnathostomiasis etc. |

A

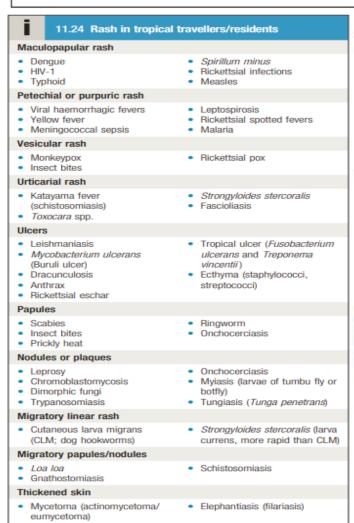





Fig. 11.7 Examples of skin lesions in patients with fever in the tropics. A Subcutaneous nodule due to botfly infection.

B Emerging larva after treatment with petroleum jelly. C Eschar of scrub typhus. D Rat bite fever. A, B and D, Courtesy of Dr Ravi Gowda, Royal Hallamshire Hospital, Sheffield.

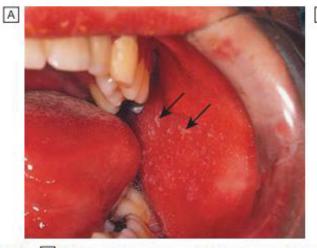
C, Courtesy of Dr Rattanaphone Phetsouvanh, Mahosot Hospital, Vientiane, PDR Laos.



# 11.25 Key issues in infectious diseases in adolescence

- Common infectious syndromes: infectious mononucleosis, bacterial pharyngitis, whooping cough, pneumonia, staphylococcal skin/soft tissue infections, urinary tract infections, acute gastroenteritis.
- Life-threatening infections: meningococcal infection (sepsis and/ or meningitis).
- Sexually transmitted infections: human papillomavirus (HPV), HIV-1, hepatitis B virus and chlamydia. These may reflect either voluntary sexual activity or sexual coercion/abuse.
- Travel-related infections: diarrhoea, malaria etc. are relatively common
- Infections in susceptible groups: patients with cystic fibrosis, congenital immunodeficiency, acute leukaemia and other adolescent malignancies are vulnerable to specific groups of infections.
- Infections requiring prolonged antimicrobial use: adherence to chronic therapy is challenging, for both oral (antituberculous or antiretroviral) and systemic (osteomyelitis, septic arthritis or post-operative infections) treatments. Outpatient antimicrobial therapy is preferred to minimise hospitalisation.
- Vaccination: engagement with age-specific vaccine programmes should be ensured, e.g. HPV, childhood booster vaccines and meningococcal vaccine.
- Risk reduction: education relating to sexual health and alcohol and recreational drug usage is important.

| 7 | 11.27 Rubella infection:                         |
|---|--------------------------------------------------|
|   | 11.27 Rubella infection: congenital malformation |


| Willy              | ธิกเหลี กาลกับกากสนับก                                                                                                                                                                                                 |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stage of gestation | Likelihood of malformations                                                                                                                                                                                            |
| 1–2<br>months      | 65-85% chance of illness, multiple defects/<br>spontaneous abortion                                                                                                                                                    |
| 3 months           | 30–35% chance of illness, usually a single congenital defect (most frequently deafness, cataract, glaucoma, mental retardation or congenital heart disease, especially pulmonary stenosis or patent ductus arteriosus) |
| 4 months           | 10% risk of congenital defects, most commonly deafness                                                                                                                                                                 |
| >20 weeks          | Occasional deafness                                                                                                                                                                                                    |

risk of

| 11.26 Infections in p                              | pregnancy                                                                              |                                                                                                                                                    |
|----------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Infection                                          | Consequence                                                                            | Prevention and management                                                                                                                          |
| Rubella                                            | Congenital malformation                                                                | Childhood vaccination and vaccination of non-immune mothers<br>post-delivery                                                                       |
| Cytomegalovirus                                    | Neonatal infection, congenital malformation                                            | Limited prevention strategies                                                                                                                      |
| Zika virus                                         | Congenital malformation                                                                | Avoidance of travel, delay in pregnancy if infected                                                                                                |
| Varicella zoster virus                             | Neonatal infection, congenital malformation, severe infection in mother                | VZ immunoglobulin (see Box 11.31)                                                                                                                  |
| Herpes simplex virus (HSV)                         | Congenital or neonatal infection                                                       | Aciclovir and consideration of caesarean section for mothers who shed HSV from genital tract at time of delivery. Aciclovir for infected neonates  |
| Hepatitis B virus                                  | Chronic infection of neonate                                                           | Hepatitis B immunoglobulin and active vaccination of newborn                                                                                       |
| Hepatitis E virus                                  | Fulminant hepatitis, pre-term delivery, fetal loss                                     | Maintenance of standard food hygiene practices                                                                                                     |
| HIV-1                                              | Chronic infection of neonate                                                           | Antiretroviral drugs for mother and infant and consideration of<br>caesarean section if HIV-1 viral load detectable. Avoidance of<br>breastfeeding |
| Parvovirus B19                                     | Congenital infection                                                                   | Avoidance of individuals with acute infection if pregnant                                                                                          |
| Measles                                            | More severe infection in mother and neonate, fetal loss                                | Childhood vaccination, human normal immunoglobulin in<br>non-immune pregnant contacts and vaccination post-delivery                                |
| Dengue                                             | Neonatal dengue if mother has infection < 5 weeks prior to delivery                    | Vector (mosquito) control                                                                                                                          |
| Syphilis                                           | Congenital malformation                                                                | Serological testing in pregnancy with prompt treatment of<br>infected mothers                                                                      |
| Neisseria gonorrhoeae and<br>Chlamydia trachomatis | Neonatal conjunctivitis (ophthalmia neonatorum, p. 340)                                | Treatment of infection in mother and neonate                                                                                                       |
| Listeriosis                                        | Neonatal meningitis or bacteraemia, bacteraemia or pyrexia of unknown origin in mother | Avoidance of unpasteurised cheeses and other dietary sources                                                                                       |
| Brucellosis                                        | Possibly increased incidence of fetal loss                                             | Avoidance of unpasteurised dairy products                                                                                                          |
| Group B streptococcal infection                    | Neonatal meningitis and sepsis. Sepsis in mother after delivery                        | Risk- or screening-based antimicrobial prophylaxis in labour (recommendations vary between countries)                                              |
| Toxoplasmosis                                      | Congenital malformation                                                                | Diagnosis and prompt treatment of cases, avoidance of<br>under-cooked meat while pregnant                                                          |
| Malaria                                            | Fetal loss, intrauterine growth retardation, severe malaria in mother                  | Avoidance of insect bites. Intermittent preventative treatment during pregnancy to decrease incidence in high-risk countries                       |

| Affected age group                                                                             | Clinical manifestations                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fifth disease (erythem<br>Small children                                                       | Three clinical stages: a 'slapped cheek' appearance, followed by a maculopapular rash progressing to a reticulate eruption or the body and limbs, then a final stage of resolution. Often the child is quite well throughout |
| <b>Gloves and socks syn</b> e<br>Young adults                                                  | drome  Fever and an acral purpuric eruption with a clear margin at the wrists and ankles.  Mucosal involvement also occurs                                                                                                   |
| Arthropathies Adults and occasionally children                                                 | Symmetrical small-joint polyarthropathy. In children it tends to involve the larger joints in an asymmetrical distribution                                                                                                   |
| Impaired erythropoies<br>Adults, those with<br>haematological disease,<br>the immunosuppressed | Mild anaemia; in an individual with an underlying haematological abnormality it can precipitate transient aplastic crisis, or in the immunocompromised a more sustained but often milder pure red cell aplasia               |
| Hydrops fetalis Transplacental fetal infection                                                 | Asymptomatic or symptomatic maternal infection that can cause fetal anaemia with                                                                                                                                             |

| 11.29 Herpesvi                              | Infection                                                                                                                                                                                                                                                                          |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Herpes simplex virus (HS                    |                                                                                                                                                                                                                                                                                    |
| HSV-1 (p. 247)                              | Herpes labialis ('cold sores') Stomatitis, pharyngitis Corneal ulceration Finger infections ('whitlows') Eczema herpeticum Encephalitis Genital ulceration and neonatal infection (acquired during vaginal delivery) Acute meningitis or transverse myelitis; rarely, encephalitis |
| Varicella zoster virus (VZV)                | Chickenpox (varicella)<br>Shingles (herpes zoster)                                                                                                                                                                                                                                 |
| Cytomegalovirus (CMV)<br>(p. 242)           | Congenital infection Infectious mononucleosis (heterophile antibody-negative) Hepatitis Disease in immunocompromised patients retinitis, encephalitis, pneumonitis, hepatitis, enteritis Fever with abnormalities in haematological parameters                                     |
| Epstein-Barr virus<br>(EBV) (p. 241)        | Infectious mononucleosis Burkitt's and other lymphomas Nasopharyngeal carcinoma Oral hairy leucoplakia (AIDS patients) Other lymphomas, post-transplant lymphoproliferative disorder (p. 225)                                                                                      |
| Human herpesvirus 6<br>and 7 (HHV-6, HHV-7) | Exanthem subitum Disease in immunocompromised patients                                                                                                                                                                                                                             |
| Human herpesvirus 8 (HHV-8) (p. 248)        | Kaposi's sarcoma, primary effusion<br>lymphoma, multicentric Castleman's<br>disease                                                                                                                                                                                                |



an aplastic crisis, leading to non-immune hydrops fetalis and spontaneous abortion



Fig. 11.8 Measles. A Koplik's spots (arrows) seen on buccal mucosa in the early stages of clinical measles. B Typical measles rash.

For Critical Care Treatment,

SK+F offers

Meropenem 250mg, 500mg & 1g IV Injection

R

Produced from,
Only

DEDICATED
CARBAPENEM PLANT of Bangladesh



| varicella zoster Disease state                                    | Treatment options                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary genital HSV                                               | Famciclovir 250 mg 3 times daily for 7–10 days Valaciclovir 1 g twice daily for 7–10 days Oral aciclovir 200 mg 5 times daily or 400 mg 3 times daily for 7–10 days                                                                                   |
| Severe and preventing<br>oral intake                              | Aciclovir 5 mg/kg 3 times daily IV until<br>patient can tolerate oral therapy                                                                                                                                                                         |
| Recurrent genital<br>HSV-1 or 2                                   | Oral aciclovir 200 mg 5 times daily or<br>400 mg 3 times daily for 5 days<br>Famciclovir 125 mg twice daily for<br>5 days<br>Valaciclovir 500 mg twice daily for<br>3–5 days or 2 g twice daily for 1 day.<br>Shorter durations increasingly favoured |
| Primary or recurrent oral HSV                                     | Usually no treatment<br>If required, usually short duration, e.g.<br>valaciclovir 2 g twice daily for 1 day                                                                                                                                           |
| Mucocutaneous<br>HSV infection in<br>immunocompromised<br>host    | Aciclovir 5 mg/kg 3 times daily IV for 7–10 days Oral aciclovir 400 mg 4 times daily for 7–10 days Famciclovir 500 mg 3 times daily for 7–10 days Valaciclovir 1 g twice daily for 7–10 days                                                          |
| Chickenpox in adult or child                                      | Oral aciclovir 800 mg 5 times daily for 5 days Famciclovir 500 mg 3 times daily for 5 days Valaciclovir 1 g 3 times daily for 5 days                                                                                                                  |
| Immunocompromised host/pregnant woman                             | Aciclovir 5 mg/kg 3 times daily IV until<br>patient is improving, then complete<br>therapy with oral therapy until all lesions<br>are crusting over                                                                                                   |
| Shingles                                                          | Treatment and doses as for chickenpox<br>but duration typically 7–10 days                                                                                                                                                                             |
| Visceral involvement<br>(non-CNS) in HSV                          | Aciclovir IV 5 mg/kg 3 times daily for 14 days                                                                                                                                                                                                        |
| Visceral involvement<br>(non-CNS) in VZV                          | Aciclovir IV 5 mg/kg 3 times daily for 7 days                                                                                                                                                                                                         |
| Severe complications<br>(encephalitis,<br>disseminated infection) | Aciclovir IV 10 mg/kg 3 times daily (up to 20 mg/kg in neonates) for 14–21 days                                                                                                                                                                       |
| HSV disease<br>suppression                                        | Aciclovir 400 mg twice daily<br>Famciclovir 250 mg twice daily<br>Valaciclovir 500 mg daily                                                                                                                                                           |



zoster virus)

Fig. 11.9 Slapped cheek syndrome. The typical facial rash of parvovirus



#### 11.31 Indications for varicella zoster immunoglobulin (VZIG) in adults

An adult should satisfy all three of the following conditions:

#### 1. Significant contact

Contact with chickenpox (any time from 48 hrs before the rash until crusting of lesions) or zoster (exposed, disseminated or, with immunocompromised contacts, localised zoster; between development of the rash until crusting) defined as:

- Prolonged household contact, sharing a room for ≥15 mins or face-to-face contact (includes direct contact with zoster lesions)
- · Hospital contact with chickenpox in another patient, health-care worker or visitor
- . Intimate contact (e.g. touching) with person with shingles lesions
- · Newborn whose mother develops chickenpox no more than 5 days before delivery or 2 days after delivery

#### 2. Susceptible contact

· Individual with no history of chickenpox, ideally confirmed by negative test for VZV IgG

#### 3. Predisposition to severe chickenpox

- · Immunocompromised due to disease (e.g. acute leukaemia, HIV, other primary or secondary immunodeficiency)
- · Medically immunosuppressed (e.g. following solid organ transplant; current or recent (<6 months) cytotoxic chemotherapy or radiotherapy; current or recent (<3 months) high-dose glucocorticoids; haematopoietic stem cell transplant)
- Pregnant (any stage)
- Infants: newborn whose mother has had chickenpox as above; premature infants < 28 weeks



# 11.32 Causes of infectious mononucleosis syndrome

- Epstein-Barr virus infection
- Cytomegalovirus
- Human herpesvirus-6 or 7
- HIV-1 primary infection (p. 311)
- Toxoplasmosis



## 11.33 Complications of Epstein-Barr virus infection

#### Common

- · Severe pharyngeal oedema
- Antibiotic-induced rash (80-90% with ampicillin)
- Hepatitis (80%)
- · Prolonged post-viral fatigue (10%)
- Jaundice (< 10%)</li>

# Uncommon

# Neurological

- · Cranial nerve palsies
- Polyneuritis
- Transverse myelitis
- Meningoencephalitis

#### Haematological

Haemolytic anaemia

Renal

- Thrombocytopenia

### Abnormalities on urinalysis Cardiac

- Myocarditis
- ECG abnormalities
- Interstitial nephritis
- Pericarditis

### Rare

- Ruptured spleen
- Respiratory obstruction
- Agranulocytosis
- · X-linked lymphoproliferative syndrome

# **EBV-associated malignancy**

- · Nasopharyngeal carcinoma
- · Burkitt's lymphoma
- · Hodgkin lymphoma (certain subtypes only)
- · Primary CNS lymphoma
- Lymphoproliferative disease in immunocompromised






Fig. 11.10 Varicella zoster virus infection. A Chickenpox. B Shingles in a thoracic dermatome





Fig. 11.11 Typical unilateral mumps. A Note the loss of angle of the jaw on the affected (right) side. B Comparison showing normal (left) side.

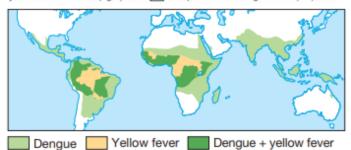



Fig. 11.13 Endemic zones of yellow fever and dengue.



# 11.34 Clinical features of dengue fever

# Incubation period

2-7 days

#### **Prodrome**

· 2 days of malaise and headache

# Acute onset

 Fever, backache, arthralgias, headache, generalised pains ('break-bone fever'), pain on eye movement, lacrimation, scleral injection, anorexia, nausea, vomiting, pharyngitis, upper respiratory tract symptoms, relative bradycardia, prostration, depression, hyperaesthesia, dysgeusia, lymphadenopathy

#### Fever

 Continuous or 'saddle-back', with break on 4th or 5th day and then recrudescence; usually lasts 7–8 days

#### Rash

 Initial flushing faint macular rash in first 1–2 days. Maculopapular, scarlet morbilliform blanching rash from days 3–5 on trunk, spreading centrifugally and sparing palms and soles; onset often with fever defervescence. May desquamate on resolution or give rise to petechiae on extensor surfaces

# Convalescence

 Slow and may be associated with prolonged fatigue syndrome, arthralgia or depression

## Complications

- Dengue haemorrhagic fever and disseminated intravascular coagulation
- · Dengue shock syndrome
- Severe organ involvement
- · Vertical transmission if infection within 5 weeks of delivery

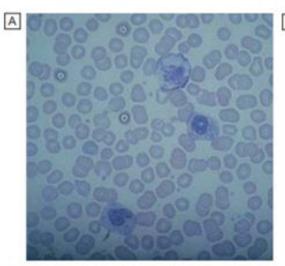





Fig. 11.12 Features of infectious mononucleosis. A Atypical lymphocytes in peripheral blood. B Skin reaction to ampicillin.

# i

# 11.35 WHO case definitions of dengue, 2015

#### Probable dengue fever

- · Exposure in an endemic area
- Fever
- · Two of:

Nausea/vomiting

Rash

Aches/pains

Positive tourniquet test

Leucopenia

Any warning sign

Laboratory confirmation important

Needs regular medical observation and instruction in the warning signs If there are no warning signs, need for hospitalisation is influenced by age, comorbidities, pregnancy and social factors

## Dengue with warning signs

· Probable dengue plus one of:

Abdominal pain or tenderness

Persistent vomiting

Signs of fluid accumulation, e.g. pleural effusion or ascites

Mucosal bleed

Hepatomegaly > 2 cm

Rapid increase in haematocrit with fall in platelet count

Needs medical intervention, e.g. intravenous fluid

#### Severe dengue

· Severe plasma leakage leading to:

Shock (dengue shock syndrome)

Fluid accumulation with respiratory distress

 Severe haemorrhagic manifestations, e.g. gastrointestinal haemorrhage

· Severe organ involvement (atypical features):

Liver AST or ALT ≥1000 U/L

CNS: impaired consciousness, meningoencephalitis, seizures Cardiomyopathy, conduction defects, arrhythmias

Other organs, e.g. acute kidney injury, pancreatitis, acute lung injury, disseminated intravascular coagulopathy, rhabdomyolysis

Needs emergency medical treatment and specialist care with intensive care input

(ALT = alanine aminotransferase; AST = aspartate aminotransferase)

Adapted from https://wwwn.cdc.gov/nndss/conditions/dengue-virus-infections/
case-definition/2015/

| Disease                                                                                | Reservoir                                               | Transmission                                                  | Incubation period                                     | Geography                                            | Mortality<br>rate | Clinical features of severe disease <sup>1</sup>                                                                                                     |
|----------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lassa fever                                                                            | Multimammate<br>rats (Mastomys<br>natalensis)           | Urine from rat<br>Body fluids from<br>patients                | 6-21 days                                             | West Africa                                          | 15%               | Haemorrhage, shock,<br>encephalopathy, ARDS (responds<br>to ribavirin), deafness in survivor                                                         |
| Ebola fever                                                                            | Fruit bats<br>(Pteropodidae<br>family) and<br>bush meat | Body fluids from<br>patients<br>Handling infected<br>primates | 2-21 days                                             | Central Africa<br>Outbreaks as far<br>north as Sudan | 25–90%            | Haemorrhage and/or diarrhoea,<br>hepatic failure and acute kidney<br>injury                                                                          |
| Marburg fever                                                                          | Undefined                                               | Body fluids from<br>patients<br>Handling infected<br>primates | 3-9 days                                              | Central Africa<br>Outbreak in<br>Angola              | 25–90%            | Haemorrhage, diarrhoea,<br>encephalopathy, orchitis                                                                                                  |
| Yellow fever                                                                           | Monkeys                                                 | Mosquitoes                                                    | 3–6 days                                              | See Figure 11.13                                     | ~15%              | Hepatic failure, acute kidney<br>injury, haemorrhage                                                                                                 |
| Dengue                                                                                 | Humans                                                  | Aedes aegypti                                                 | 2-7 days                                              | See Figure 11.13                                     | <10%2             | Haemorrhage, shock                                                                                                                                   |
| Crimean-Congo<br>haemorrhagic<br>fever                                                 | Small<br>vertebrates<br>Domestic and<br>wild animals    | Ixodes tick Body fluids                                       | 1–3 days up<br>to 9 days<br>3–6 days up<br>to 13 days | Africa, Asia,<br>Eastern Europe                      | 30%               | Encephalopathy, early<br>haemorrhage, hepatic failure,<br>acute kidney injury, ARDS                                                                  |
| Rift Valley<br>fever                                                                   | Domestic<br>livestock                                   | Contact with<br>animals, mosquito<br>or other insect bites    | 2-6 days                                              | Africa, Arabian<br>peninsula                         | 1%                | Haemorrhage, blindness,<br>meningoencephalitis<br>(complications only in a minority)                                                                 |
| Kyasanur fever                                                                         | Monkeys                                                 | Ticks                                                         | 3-8 days                                              | Karnataka State,<br>India                            | 5–10%             | Haemorrhage, pulmonary<br>oedema, neurological features,<br>iridokeratitis in survivors                                                              |
| Bolivian and<br>Argentinian<br>haemorrhagic<br>fever (Junin<br>and Machupo<br>viruses) | Rodents<br>( <i>Calomys</i> spp.)                       | Urine, aerosols<br>Body fluids from<br>case (rare)            | 5–19 days<br>(3–6 days<br>for<br>parenteral)          | South America                                        | 15–30%            | Haemorrhage, shock, cerebellar signs (may respond to ribavirin)                                                                                      |
| Haemorrhagic<br>fever with<br>renal syndrome<br>(Hantaan fever)                        | Rodents                                                 | Aerosols from faeces                                          | 5–42 days<br>(typically 14<br>days)                   | Northern Asia,<br>northern Europe,<br>Balkans        | 5%                | Acute kidney injury,<br>cerebrovascular accidents,<br>pulmonary oedema, shock<br>(hepatic failure and haemorrhagi<br>features only in some variants) |

Ill potentially have circulatory failure. "Mortality of uncomplicated and haemorrhagic dengue fever, respectively. RDS = acute respiratory distress syndrome)

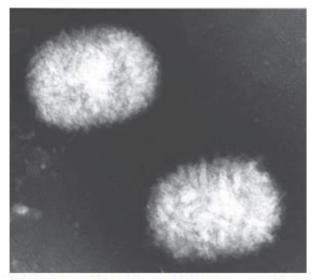



Fig. 11.15 Electron micrograph of molluscum contagiosum, a poxvirus. Courtesy of Prof. Goura Kudesia, Northern General Hospital, Sheffield.







Fig. 11.14 Cutaneous manifestations of herpes simplex virus 1 (HSV-1). A Acute HSV-1. There were also vesicles in the mouth – herpetic stomatitis. B Herpetic whittow. C Eczema herpeticum. HSV-1 infection spreads rapidly in eczematous skin.

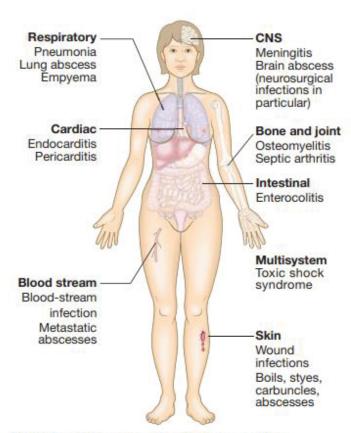



Fig. 11.16 Infections caused by Staphylococcus aureus.

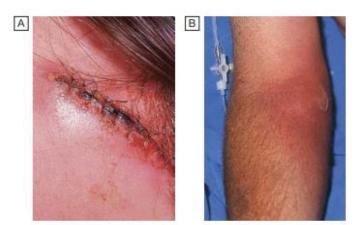



Fig. 11.17 Manifestations of skin infection with Staphylococcus aureus. A Wound infection. B Cannula-related infection.



Fig. 11.18 Full-thickness desquamation after staphylococcal toxic shock syndrome.

| the Visual Infusion Phle                                                                                                           | editis (VIP) | Assessment and                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------|
| Clinical features                                                                                                                  | Score        | management                                                                                             |
| IV site appears healthy                                                                                                            | 0            | No signs of phlebitis<br>Observe cannula                                                               |
| One of the following is evident:<br>Slight pain near IV site<br>Slight redness near IV site                                        | 1            | Possible first signs<br>of phlebitis<br>Observe cannula                                                |
| Two of the following are evident: Pain near IV site Erythema Swelling                                                              | 2            | Early stage of<br>phlebitis<br>Resite cannula                                                          |
| ALL of the following are evident<br>and extensive:<br>Pain along path of cannula<br>Erythema<br>Induration                         | 3            | Medium stage of<br>phlebitis<br>Resite cannula<br>Consider treatment                                   |
| ALL of the following are evident<br>and extensive:<br>Pain along path of cannula<br>Erythema<br>Induration<br>Palpable venous cord | 4            | Advanced stage of<br>phlebitis or start of<br>thrombophlebitis<br>Resite cannula<br>Consider treatment |
| ALL of the following are evident: Pain along path of cannula Erythema Induration Palpable venous cord Pyrexia                      | 5            | Advanced stage of<br>thrombophlebitis<br>Initiate treatment<br>Resite cannula                          |

Adapted from Jackson A. Nursing Times 1997; 94:68-71.

# 11.38 Streptococcal and related infections

- β-haemolytic group A (Strep. pyogenes) Skin and soft tissue infection
- (including erysipelas, impetigo, necrotising fasciitis)
- Streptococcal toxic shock syndrome
- Puerperal sepsis
- Scarlet fever Glomerulonephritis
- Rheumatic fever
- Bone and joint infection
- β-haemolytic group B (Strep. agalactiae)
- Neonatal infections, including meninaitis
- Female pelvic infections
   Cellulitis
- β-haemolytic group C (various zoonotic streptococci)
- Cellulitis Endocarditis
- PharyngitisSeptic arthritis
- α-, β- or non-haemolytic group D (Enterococcus faecalis, E. faecium)
- Endocarditis
- Intra-abdominal infections
- · Urinary tract infection
- α- or non-haemolytic group D (Strep. gallolyticus subsp. gallolyticus/S. bovis biotype I)
- · Bacteraemia/endocarditis associated with large bowel malignancy
- β-haemolytic group G streptococci
- Cellulitis Endocarditis
- Liver abscessSeptic arthritis
- α-haemolytic optochin-resistant (viridans streptococci -Strep. mitis, Strep. sanguis, Strep. mutans, Strep. salivarius)
- Sepsis in immunosuppressed
- Endocarditis α-haemolytic optochin-sensitive (Strep. pneumoniae)
- Pneumonia
- Sepsis
- Meningitis Endocarditis
- Spontaneous bacterial
- Otitis media
- peritonitis
   Sinusitis
- Variable haemolysis (Strep. milleri group Strep. anginosus, Strep. intermedius, Strep. constellatus)
- Endocarditis
  - Intra-abdominal infections
- · Urinary tract infection
- Anaerobic streptococci (Peptostreptococcus spp.)
- Sepsis in immunosuppressed
- Endocarditis
- N.B. All streptococci can cause sepsis.

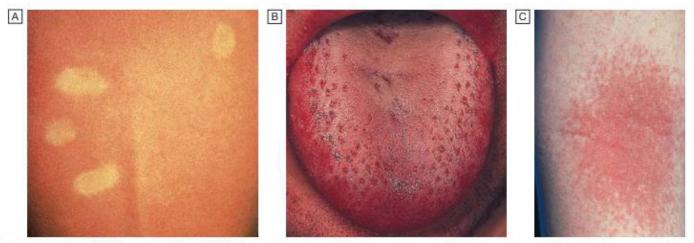



Fig. 11.19 Clinical features of scarlet fever. A Characteristic rash with blanching on pressure. B 'Strawberry tongue'. C Pastia's sign: a petechial rash in the cubital fossa.

# 11.39 Diagnosis and treatment of yaws, pinta and bejel

#### Diagnosis of early stages

 Detection of spirochaetes in exudate of lesions by dark ground microscopy

#### Diagnosis of latent and early stages

• Positive serological tests, as for syphilis (see Box 13.8, p. 339)

#### Treatment of all stages

 Single intramuscular injection of 1.2 g long-acting penicillin, e.g. benzathine benzylpenicillin

#### Uveitis Meningitis Retinal thrombophlebitis Intracranial or subara haemorrhage Cranial nerve palsies Stroke Myelopathy Hilar lymphadenopathy Radiculopathy Malodorous perspira Pneumonitis or Myocarditis abscesses Endocarditis Splenic abscesses Spinal spondylitis or or calcification sacroiliitis Hepatitis Paravertebral or psoas abscess Epididymo-orchitis Pancytopenia Suppurative arthritis Synovitis, bursitis Osteomyelitis-

# 11.40 Treatment of brucellosis

#### Adults with non-localised disease

 Doxycycline 100 mg twice daily orally for 6 weeks plus gentamicin 5 mg/kg IV once daily for 7 days

or

 Doxycycline 100 mg twice daily plus rifampicin 600–900 mg orally once daily for 6 weeks

#### Bone disease

 Doxycycline 100 mg twice daily plus rifampicin 600–900 mg once daily orally for 6 weeks plus gentamicin 5 mg/kg IV once daily for 7 days

or

 Ciprofloxacin 750 mg twice daily orally plus rifampicin 600–900 mg orally once daily for 3 months

# Neurobrucellosis

 Doxycycline 100 mg twice daily plus rifampicin 600–900 mg orally once daily for 6 weeks plus ceftriaxone 2vg IV twice daily until the cerebrospinal fluid is clear (though susceptibility should be confirmed because sensitivity to third-generation cephalosporins varies among strains)

# **Endocarditis**

- Almost always needs surgical intervention plus
- Doxycycline 100 mg twice daily, rifampicin 600–900 mg orally once daily and co-trimoxazole 5 mg/kg of trimethoprim component for 6 months plus gentamicin 5 mg/kg IV once daily for 2–4 weeks

# **Pregnancy**

 Rifampicin 600–900 mg orally once daily and co-trimoxazole 5 mg/ kg of trimethoprim component for 4 weeks, but caution in last week of pregnancy due to displacement of bilirubin from albumin by drugs and risk of kernicterus to the fetus

Fig. 11.20 Clinical features of brucellosis.

| Species                         | Vector                                        | Geographical distribution                             |
|---------------------------------|-----------------------------------------------|-------------------------------------------------------|
| Lyme disease                    |                                               |                                                       |
| B. burgdorferi<br>sensu stricto | Tick: <i>lxodes</i><br>scapularis             | Northern and eastern USA                              |
|                                 | I. pacificus                                  | Western USA                                           |
| B. afzelii                      | I. ricinus                                    | Europe                                                |
|                                 | I. persulcatus                                | Asia                                                  |
| B. garinii                      | I. ricinus                                    | Europe                                                |
|                                 | I. persulcatus                                | Asia                                                  |
| Louse-borne rela                | psing fever                                   |                                                       |
| B. recurrentis                  | Human louse:<br>Pediculus humanus<br>corporis | Worldwide                                             |
| Tick-borne relap                | sing fever                                    |                                                       |
| B. hermsii                      | Tick: Ornithodoros<br>hermsii                 | Western North America                                 |
| B. turicatae                    | O. turicatae                                  | South-western North<br>America and northern<br>Mexico |
| B. venezuelensis                | O. rudis                                      | Central America and<br>northern South America         |
| B. hispanica                    | O. erraticus                                  | lberian peninsula and<br>north-western Africa         |
| B. crocidurae                   | O. erraticus                                  | North Africa and                                      |
|                                 |                                               |                                                       |

O. moubata

O. tholozani

O. tartakovskyi

B. duttonii

B. persica

B. latyschewii

Mediterranean region

Central, eastern and

Central Asia, Middle East

Tajikistan, Uzbekistan

southern Africa Western China, India,

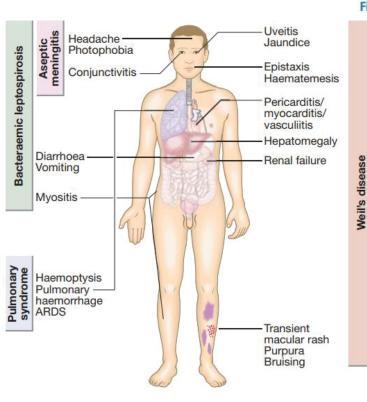





Fig. 11.21 Rash of erythema migrans in Lyme disease with metastatic secondary lesions. Courtesy of Dr Ravi Gowda, Royal Hallamshire Hospital, Sheffield.



Fig. 11.22 Louse-borne relapsing fever. Injected conjunctivae.

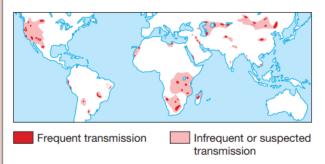
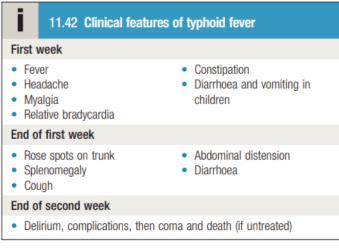
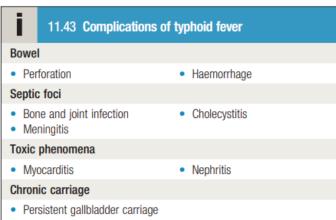





Fig. 11.24 Foci of the transmission of plague. Reproduced by permission of the World Health Organisation.

**Fig. 11.23 Clinical syndromes of leptospirosis.** (ARDS = acute respiratory distress syndrome)





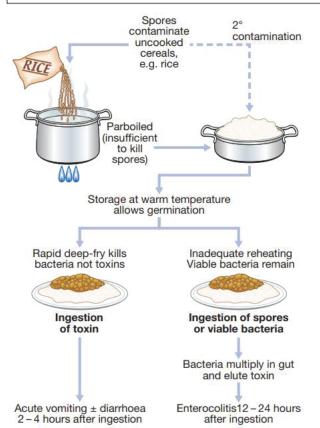



Fig. 11.25 Bacillus cereus food poisoning.

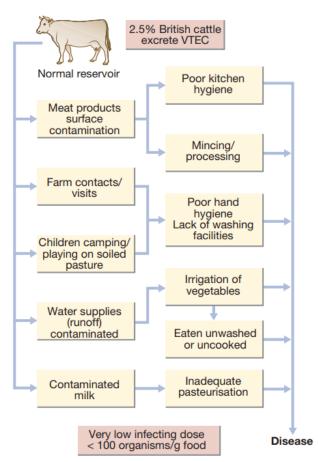



Fig. 11.26 Verocytotoxigenic Escherichia coli (VTEC) infections.

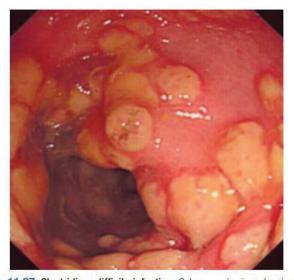
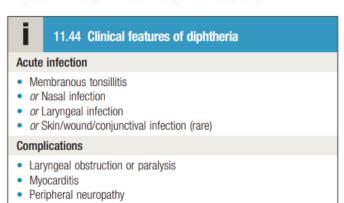




Fig. 11.27 Clostridium difficile infection. Colonoscopic view showing numerous adherent 'pseudomembranes' on the mucosa.



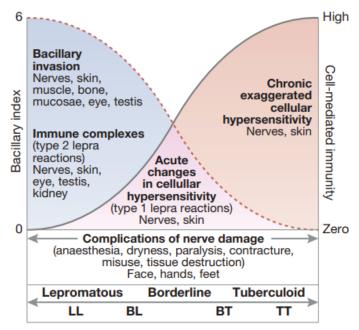



Fig. 11.28 Leprosy: mechanisms of damage and tissue affected. Mechanisms under the broken line are characteristic of disease near the lepromatous end of the spectrum, and those under the solid line are characteristic of the tuberculoid end. They overlap in the centre where, in addition, instability predisposes to type 1 lepra reactions. At the peak in the centre, neither bacillary growth nor cell-mediated immunity has the upper hand. (BL = borderline lepromatous; BT = borderline tuberculoid) Adapted from Bryceson ADM, Pfaltzgraff RE. Leprosy, 3rd edn. Churchill Livingstone, Elsevier Ltd; 1990.



# 11.45 Cardinal features of leprosy

- Skin lesions, typically anaesthetic at tuberculoid end of spectrum
- Thickened peripheral nerves
- Acid-fast bacilli on skin smears or biopsy

| 11.46 Clinical characteristics of the polar forms of leprosy                                |                                                                |                                                                |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--|
| Clinical and<br>tissue-specific<br>features                                                 | Lepromatous                                                    | Tuberculoid                                                    |  |
| Skin and nerves<br>Number and<br>distribution                                               | Widely disseminated                                            | One or a few sites, asymmetrical                               |  |
| Skin lesions Definition: Clarity of margin Elevation of margin Colour: Dark skin Light skin | Poor<br>Never<br>Slight<br>hypopigmentation<br>Slight erythema | Good<br>Common<br>Marked<br>hypopigmentation<br>Coppery or red |  |
| Surface<br>Central healing<br>Sweat and hair growth<br>Loss of sensation                    | Smooth, shiny<br>None<br>Impaired late<br>Late                 | Dry, scaly<br>Common<br>Impaired early<br>Early and marked     |  |
| Nerve enlargement and damage                                                                | Late                                                           | Early and marked                                               |  |
| Bacilli (bacterial index)                                                                   | Many (5 or 6+)                                                 | Absent (0)                                                     |  |
| Natural history                                                                             | Progressive                                                    | Self-healing                                                   |  |
| Other tissues                                                                               | Upper respiratory<br>mucosa, eye, testes,<br>bones, muscle     | None                                                           |  |
| Reactions                                                                                   | Immune complexes (type 2)                                      | Cell-mediated (type 1)                                         |  |

| 11.47                | Reactions in lepros                                                                          | у                                                                                                                                                                |
|----------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Lepra reaction type 1 (reversal)                                                             | Lepra reaction type 2<br>(erythema nodosum<br>leprosum)                                                                                                          |
| Mechanism            | Cell-mediated<br>hypersensitivity                                                            | Immune complexes                                                                                                                                                 |
| Clinical<br>features | Painful tender<br>nerves, loss of<br>function<br>Swollen skin<br>lesions<br>New skin lesions | Tender papules and nodules;<br>may ulcerate<br>Painful tender nerves, loss of<br>function<br>Iritis, orchitis, myositis,<br>lymphadenitis<br>Fever, oedema       |
| Management           | Prednisolone<br>40 mg, reducing<br>over 3–6<br>months <sup>1</sup>                           | Moderate: prednisolone 40 mg daily Severe: thalidomide <sup>2</sup> or prednisolone 40–80 mg daily, reducing over 1–6 months; local if eye involved <sup>3</sup> |

<sup>1</sup>Indicated for any new impairment of nerve or eye function. <sup>2</sup>Contraindicated in women who may become pregnant. 31% hydrocortisone drops or ointment and 1% atropine drops.



## 11.48 Principles of leprosy treatment

- · Stop the infection with chemotherapy
- Treat reactions
- Educate the patient about leprosy
- Prevent disability
- · Support the patient socially and psychologically

| 11.49 Modified WHO-recommended multidrug therapy (MDT) regimens in leprosy        |                                                                      |                                          |                                    |  |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|------------------------------------|--|--|
| Type of leprosy <sup>1</sup>                                                      | Monthly<br>supervised<br>treatment                                   | Daily self-<br>administered<br>treatment | Duration of treatment <sup>2</sup> |  |  |
| Paucibacillary                                                                    | Rifampicin<br>600 mg                                                 | Dapsone 100 mg                           | 6 months                           |  |  |
| Multibacillary                                                                    | Rifampicin<br>600 mg<br>Clofazimine<br>300 mg                        | Clofazimine<br>50 mg<br>Dapsone 100 mg   | 12 months                          |  |  |
| Paucibacillary<br>single-lesion                                                   | Ofloxacin<br>400 mg<br>Rifampicin<br>600 mg<br>Minocycline<br>100 mg |                                          | Single dose                        |  |  |
| Classification uses the bacillary index (BI) in slit-skin smears or, if BI is not |                                                                      |                                          |                                    |  |  |

available, the number of skin lesions:

- · paucibacillary single-lesion leprosy (1 skin lesion)
- paucibacillary (2–5 skin lesions)
- multibacillary (>5 skin lesions).

<sup>2</sup>Studies from India have shown that multibacillary patients with an initial BI of >4 need longer treatment, for at least 24 months.









# Fig. 11.29 Clinical features of leprosy. A Tuberculoid leprosy. Single lesion with a well-defined active edge and anaesthesia within the lesion. B Lepromatous leprosy. Widespread nodules and infiltration, with loss of the eyebrows. This man also has early collapse of the nose. C Borderline tuberculoid leprosy with severe nerve damage. This boy has several well-defined, hypopigmented, macular, anaesthetic lesions. He has severe nerve damage affecting both ulnar and median nerves bilaterally and has sustained

severe burns to his hands. 

Reversal (type 1) reactions. Erythematous, oedematous lesions.

| Disease                                 | Organism                  | Reservoir                                     | Vector             | Geographical<br>area                                | Rash                         | Gangrene | Target organs                          | Mortalit          |
|-----------------------------------------|---------------------------|-----------------------------------------------|--------------------|-----------------------------------------------------|------------------------------|----------|----------------------------------------|-------------------|
| Spotted fever g                         | roup                      |                                               |                    |                                                     |                              |          |                                        |                   |
| Rocky Mountain<br>spotted fever         | R. rickettsii             | Rodents, dogs,<br>ticks                       | <i>lxodes</i> tick | North, Central and<br>South America                 | Morbilliform<br>Haemorrhagic | Often    | Bronchi,<br>myocardium,<br>brain, skin | 2–12%             |
| Boutonneuse<br>fever                    | R. conorii                | Rodents, dogs,<br>ticks                       | <i>lxodes</i> tick | Mediterranean,<br>Africa, South-west<br>Asia, India | Maculopapular                | -        | Skin, meninges                         | 2.5%3             |
| Siberian tick<br>typhus                 | R. sibirica               | Rodents, birds,<br>domestic<br>animals, ticks | Various<br>ticks   | Siberia, Mongolia,<br>northern China                | Maculopapular                | -        | Skin, meninges                         | Rare <sup>3</sup> |
| Australian tick<br>typhus               | R. australis              | Rodents, ticks                                | Ticks              | Australia                                           | Maculopapular                | -        | Skin, meninges                         | Rare <sup>3</sup> |
| Oriental spotted<br>fever               | R. japonica               | Rodents, dogs,<br>ticks                       | Ticks              | Japan                                               | Maculopapular                | -        | Skin, meninges                         | Rare <sup>3</sup> |
| African tick bite<br>fever <sup>1</sup> | R. africae                | Cattle, game,<br>ticks                        | Ixodes tick        | South Africa                                        | Can be spotless              | -        | Skin, meninges                         | Rare <sup>3</sup> |
| <b>Typhus group</b><br>Scrub typhus     | Orientia<br>tsutsugamushi | Rodents                                       | Trombicula<br>mite | South-east Asia                                     | Maculopapular                | Unusual  | Bronchi,<br>myocardium,<br>brain, skin | Rare <sup>3</sup> |
| Epidemic<br>typhus                      | R. prowazekii             | Humans                                        | Louse              | Worldwide                                           | Morbilliform<br>Haemorrhagic | Often    | Brain, skin,<br>bronchi,<br>myocardium | Up to<br>40%      |
| Endemic typhus                          | R. typhi                  | Rats                                          | Flea               | Worldwide                                           | Slight                       | _        | -                                      | Rare <sup>3</sup> |

| 11.51 Clinical diseases caused by <i>Bartonella</i> spp. |         |                  |                                                                 |  |
|----------------------------------------------------------|---------|------------------|-----------------------------------------------------------------|--|
| Reservoir                                                | Vector  | Organism         | Disease                                                         |  |
| Cats                                                     | Flea    | B. henselae      | Cat scratch disease,<br>bacillary angiomatosis,<br>endocarditis |  |
| Undefined                                                | Lice    | B. quintana      | Trench fever, bacillary angiomatosis, endocarditis              |  |
| Undefined                                                | Sandfly | B. bacilliformis | Carrion's disease:<br>Oroya fever and<br>verruga peruana        |  |
| Undefined                                                | Flea    | B. rochalimae    | Fever, rash, anaemia, splenomegaly                              |  |

| 11.52 Chlamydial infections             |                                                                                                      |  |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Organism                                | Disease caused                                                                                       |  |  |  |
| Chlamydia trachomatis                   | Trachoma Lymphogranuloma venereum (see Box 13.12, p. 341) Cervicitis, urethritis, proctitis (p. 334) |  |  |  |
| Chlamydia psittaci                      | Psittacosis (see Box 17.36, p. 582)                                                                  |  |  |  |
| Chlamydophila (Chlamydia)<br>pneumoniae | Atypical pneumonia (see Box 17.36, p. 582) Acute/chronic sinusitis                                   |  |  |  |



Fig. 11.30 Trachoma. Trachoma is characterised by hyperaemia and numerous pale follicles. *Courtesy of Institute of Ophthalmology, Moorfields Eye Hospital, London.* 

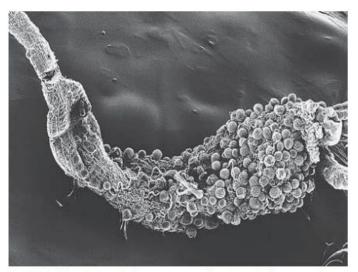



Fig. 11.32 Scanning electron micrograph of *Plasmodium falciparum* oöcysts lining an anopheline mosquito's stomach.

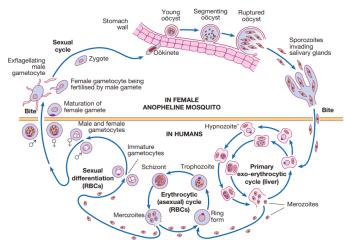



Fig. 11.33 Malarial parasites: life cycle. Hypnozoites(\*) are present only in Plasmodium vivax and P. ovale infections. (RBC = red blood cell)



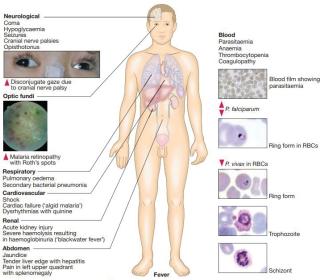
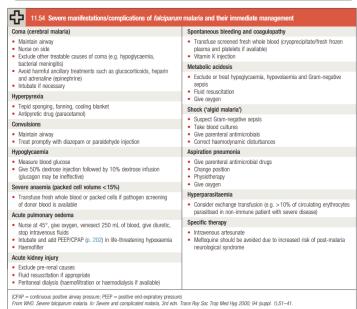




Fig. 11.34 Features of Plasmodium falciparum infection. (RBC = red blood cell) hisets (malaria retinopathy) Courtesy of Dr Nicholas Beare, Royal Liverpool University Hospital; (blood films of P. vivax and P. falciparum) Courtesy of Dr Kamoirat Silamut, Mahidol Oxford Research Unit, Bangkok, Thailand.

|                                                 | Relationships b               |                                      | of parasite                |
|-------------------------------------------------|-------------------------------|--------------------------------------|----------------------------|
| Cycle/<br>feature                               | Plasmodium<br>vivax, P. ovale |                                      | P. falciparum              |
| Pre-patent<br>period<br>(minimum<br>incubation) | 8–25 days                     | 15–30 days                           | 8–25 days                  |
| Exo-<br>erythrocytic<br>cycle                   | Persistent as hypnozoites     | Pre-erythrocytic only                | Pre-erythrocytic only      |
| Asexual cycle                                   | 48 hrs<br>synchronous         | 72 hrs<br>synchronous                | <48 hrs<br>asynchronous    |
| Fever periodicity                               | Alternate days                | Every third day                      | None                       |
| Delayed<br>onset                                | Common                        | Rare                                 | Rare                       |
| Relapses                                        | Common up to 2 years          | Recrudescence<br>many years<br>later | Recrudescence up to 1 year |



# i

#### 11.55 Malaria treatment

#### Mild malaria

#### Preferred therapy

 Co-artemether (CoArtem or Riamet); contains artemether and lumefantrine (4 tablets orally at 0, 8, 24, 36, 48 and 60 hrs)

#### Alternative therapy

 Quinine (600 mg of quinine salt 3 times daily orally for 5–7 days), together with or followed by doxycycline (200 mg once daily orally for 7 days)

Use clindamycin not doxycycline if the patient is a pregnant woman or young child

or

 Atovaquone–proguanil (Malarone, 4 tablets orally once daily for 3 days)

#### Pregnancy

- Co-artemether but avoid in early pregnancy.
- If not using co-artemether, use quinine plus clindamycin (450 mg 3 times daily orally for 7 days)

#### Other regimens

 Artesunate (200 mg orally daily for 3 days) and mefloquine (1 g orally on day 2 and 500 mg orally on day 3)

#### Severe malaria

#### Preferred therapy

 Artesunate 2.4 mg/kg IV at 0, 12 and 24 hrs and then once daily for 7 days. Once the patient is able to recommence oral intake, switch to 2 mg/kg orally once daily, to complete a total cumulative dose of 17–18 mg/kg

#### Alternative therapy

- Quinine, loading dose 20 mg/kg IV over 4 hrs, up to a maximum of 1.4 g, then maintenance doses of 10 mg/kg quinine salt given as 4-hr infusions 3 times daily for the first 48 hrs then twice a day, up to a maximum of 700 mg per dose or until the patient can take drugs orally. Combine with doxycycline (or clindamycin if there are contraindications to doxycycline)
- Note the loading dose should not be given if quinine, quinidine or mefloquine has been administered in the previous 24 hrs
- Patients should be monitored by ECG while receiving quinine, with special attention to QRS duration and QT interval

#### Non-falciparum malaria

#### Preferred therapy

 Chloroquine: 600 mg chloroquine base orally, followed by 300 mg base in 6 hrs, then 150 mg base twice daily for 2 more days plus primaquine (30 mg orally daily (for P. vivax) or 15 mg orally daily (for P. ovale) for 14 days) after confirming G6PD-negative

# Patients with mild to moderate G6PD deficiency and P. vivax or P. ovale

· Chloroquine plus primaquine 0.75 mg/kg weekly orally for 8 weeks

#### Chloroquine-resistant P. vivax

· Co-artemether as for P. falciparum

(G6PD = glucose-6-phosphate dehydrogenase)

| 11.56 Chemoprophylaxis of malaria      |                                        |                                                                   |  |
|----------------------------------------|----------------------------------------|-------------------------------------------------------------------|--|
| Antimalarial tablets                   | Adult prophylactic dose                | Regimen                                                           |  |
| Chloroquine resistance high            |                                        |                                                                   |  |
| Mefloquine <sup>2</sup>                | 250 mg weekly                          | Started 2-3 weeks before travel and continued until 4 weeks after |  |
| or Doxycycline <sup>3,4</sup>          | 100 mg daily                           | Started 1 week before and continued until 4 weeks after travel    |  |
| or Malarone <sup>4</sup>               | 1 tablet daily                         | From 1–2 days before travel until 1 week after return             |  |
| Chloroquine resistance absent          |                                        |                                                                   |  |
| Chloroquine <sup>5</sup> and proguanil | 300 mg base weekly<br>100-200 mg daily | Started 1 week before and continued until 4 weeks after travel    |  |

Choice of regimen is determined by area to be visited, length of stay, level of malaria transmission, level of drug resistance, presence of underlying disease in the traveller and concomitant medication taken. "Contraindication in the first trinseter of pregnancy, location, cardiac conduction disorders, epilopsy, psychiatric disorders; may cause europsychatric disorders. "Causes photoeneristastion and sunturn if high-protection suntibock is not used." Avoid in pregnancy. "British preparations of chioroquine usually contain 150 mg base, French preparations 100 mg base and American preparations 300 mg base.

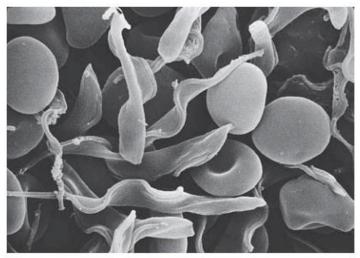



Fig. 11.35 Trypanosomiasis. Scanning electron micrograph showing trypanosomes swimming among erythrocytes.

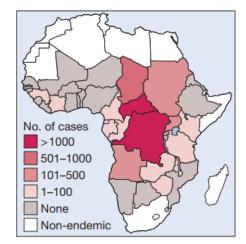



Fig. 11.36 Distribution of human African trypanosomiasis. Data are from 2009. From Simarro PP, Diarra A, Ruiz Postigo JA, et al. The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: the way forward. PLoS Negl Trop Dis 2011; 5(2):e1007.



Fig. 11.38 Retinochoroiditis due to toxoplasmosis.

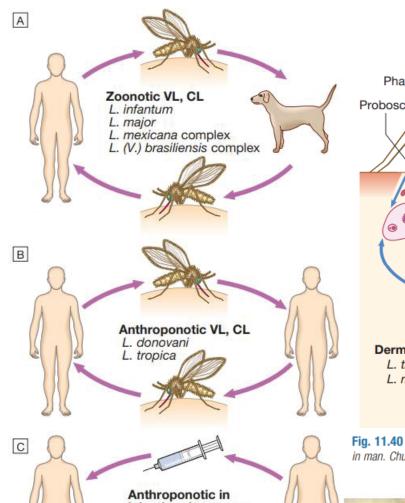



Fig. 11.39 Transmission of leishmaniasis. A Zoonotic transmission.

B Anthroponotic transmission. C Anthroponotic transmission in the injection drug-user. (CL = cutaneous leishmaniasis; VL = visceral leishmaniasis)

L. infantum

injection drug-users HIV-VL co-infection



Fig. 11.41 World distribution of visceral leishmaniasis.

| 11.57 Types of Old World cutaneous leishmaniasis |                         |                                            |
|--------------------------------------------------|-------------------------|--------------------------------------------|
| Leishmania spp.                                  | Host                    | Clinical features                          |
| L. tropica                                       | Dogs                    | Slow evolution, less severe                |
| L. major                                         | Gerbils, desert rodents | Rapid necrosis, wet sores                  |
| L. aethiopica                                    | Hyraxes                 | Solitary facial lesions with<br>satellites |

# Sandfly (Phlebotomus in eastern hemisphere, Lutzomyia and Psychodopygus in western hemisphere)

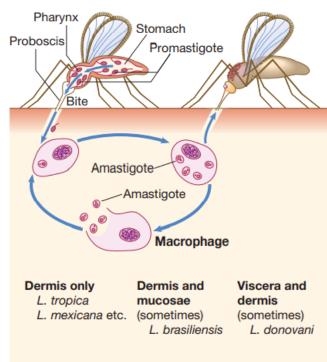



Fig. 11.40 Life cycle of Leishmania. From Knight R. Parasitic disease in man. Churchill Livingstone, Elsevier Ltd; 1982.

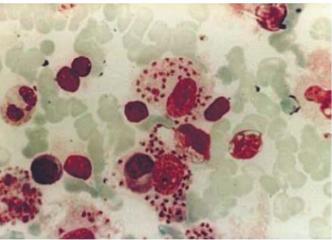



Fig. 11.42 Splenic smear showing numerous intracellular, and a few extracellular, amastigotes. Courtesy of Dr S. Sundar and Dr H.W. Murray.





11.43 Post-kala-azar dermal leishmaniasis. Al in India, with macules, papules, nodules and plaques. Bl in Sudan, with micronodular rash. rom Sundar S, Kumar K, Chakravarty J, et al. Cure of antimony-unresponsive Indian post-kala-azar dermal leishmaniasis with oral milterosine. Trans R Trop Med Hyg 2006; 100(7):698–700. B, Courtesy of Dr E.E. Zijlstra.

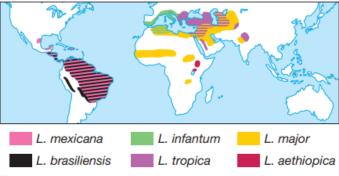



Fig. 11.44 World distribution of cutaneous leishmaniasis.

# A B

Fig. 11.45 Cutaneous leishmaniasis. A Papule. B Ulcer. B, Courtesy of Dr Ravi Gowda, Royal Hallamshire Hospital, Sheffield.

# 11.58 Classes of helminth that parasitise humans

#### Nematodes or roundworms

- Intestinal human nematodes: Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Ascaris lumbricoides, Enterobius vermicularis, Trichuris trichiura
- Tissue-dwelling human nematodes: Wuchereria bancrofti, Brugia malayi, Loa loa, Onchocerca volvulus, Dracunculus medinensis, Mansonella perstans, Dirofilaria immitis
- · Zoonotic nematodes: Trichinella spiralis

#### Trematodes or flukes

- Blood flukes: Schistosoma haematobium, S. mansoni, S. japonicum, S. mekongi, S. intercalatum
- Lung flukes: Paragonimus spp.
- Hepatobiliary flukes: Clonorchis sinensis, Fasciola hepatica, Opisthorchis felineus
- · Intestinal flukes: Fasciolopsis buski

## Cestodes or tapeworms

- Intestinal tapeworms: Taenia saginata, T. solium, Diphyllobothrium latum, Hymenolepis nana
- Tissue-dwelling cysts or worms: Taenia solium, Echinococcus granulosus

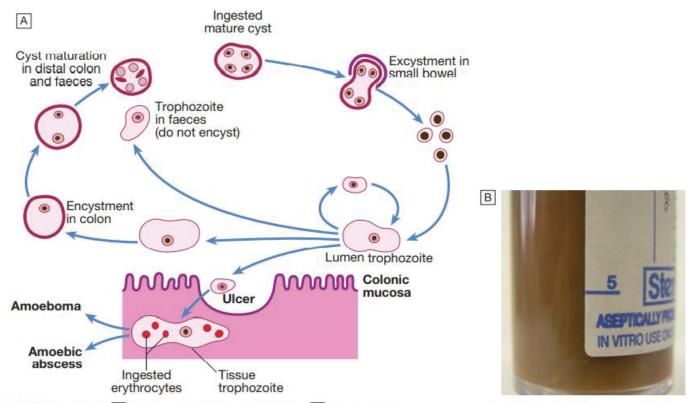



Fig. 11.46 Amoebiasis. A The life cycle of Entamoeba histolytica. B The chocolate-brown appearance of aspirated material from an amoebic liver abscess. A, From Knight R. Parasitic disease in man. Churchill Livingstone, Elsevier Ltd; 1982. B, Courtesy of Dr Ravi Gowda, Royal Hallamshire Hospital, Sheffield.





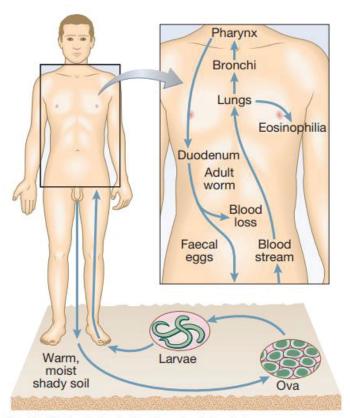



Fig. 11.47 Ancylostomiasis. Life cycle of Ancylostoma.

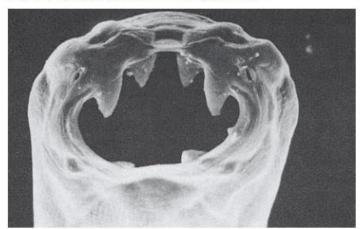



Fig. 11.48 Ancylostoma duodenale. Electron micrograph showing the ventral teeth. From Gibbons LM. SEM guide to the morphology of nematode parasites of vertebrates. Farnham Royal, Slough: Commonwealth Agricultural Bureau International: 1986.

|                              | 1.59 Clinical features of strongyloidiasis                              |
|------------------------------|-------------------------------------------------------------------------|
| Penetration                  | on of skin by infective larvae                                          |
| <ul> <li>Itchy ra</li> </ul> | sh                                                                      |
| Presence                     | of worms in gut                                                         |
| <ul> <li>Abdom</li> </ul>    | inal pain, diarrhoea, steatorrhoea, weight loss                         |
| Allergic p                   | henomena                                                                |
| <ul> <li>Urticari</li> </ul> | al plaques and papules, wheezing, arthralgia                            |
| Autoinfec                    | tion                                                                    |
|                              | nt itchy, linear, urticarial weals across abdomen and s (larva currens) |
| Systemic                     | (super-)infection                                                       |
|                              |                                                                         |

· Diarrhoea, pneumonia, meningoencephalitis, death

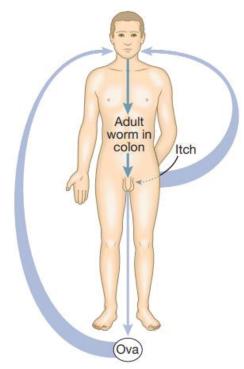



Fig. 11.49 Threadworm. Life cycle of Enterobius vermicularis.

| Worm species                              | Adult worm                   | Microfilariae                                            |
|-------------------------------------------|------------------------------|----------------------------------------------------------|
| Wuchereria bancrofti<br>and Brugia malayi | Lymphatic vessels***         | Blood <sup>-</sup><br>Pulmonary capillaries <sup>+</sup> |
| Loa loa                                   | Subcutaneous+                | Blood <sup>+</sup>                                       |
| Onchocerca volvulus                       | Subcutaneous+                | Skin <sup>+++</sup><br>Eye <sup>+++</sup>                |
| Mansonella perstans                       | Retroperitoneal <sup>-</sup> | Blood <sup>-</sup>                                       |
| Mansonella<br>streptocerca                | Skin+                        | Skin <sup>++</sup>                                       |

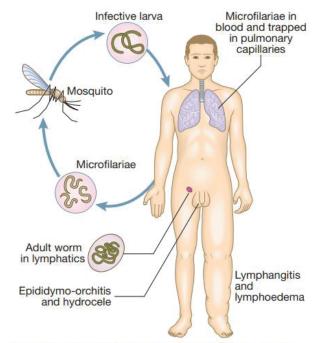



Fig. 11.50 Wuchereria bancrofti and Brugia malayi. Life cycle of organisms and pathogenesis of lymphatic filariasis.

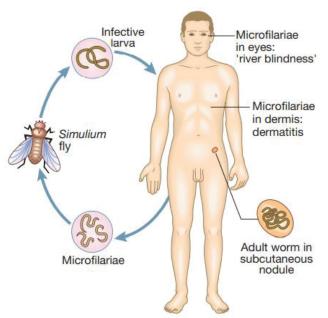



Fig. 11.51 *Onchocerca volvulus*. Life cycle of organism and pathogenesis of onchocerciasis.

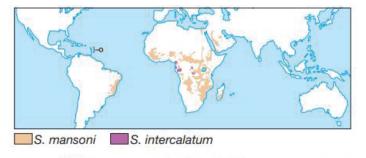



Fig. 11.52 Cutaneous larva migrans. Courtesy of Dr Ravi Gowda, Roy Hallamshire Hospital, Sheffield.



Fig. 11.53 Schistosoma. A Life cycle. B Scanning electron micrograph of adult schistosome worms, showing the larger male worm embracing the thinner female.

| 11.61 Pathogenesis of schistosomiasis |                                                                                                                                                                        |                                                                                                                     |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Time                                  | Schistosoma haematobium                                                                                                                                                | S. mansoni and S. japonicum                                                                                         |  |
| Cercaria                              | I penetration                                                                                                                                                          |                                                                                                                     |  |
| Days                                  | Papular dermatitis at site of<br>penetration                                                                                                                           | As for S. haematobium                                                                                               |  |
| Larval m                              | igration and maturation                                                                                                                                                |                                                                                                                     |  |
| Weeks                                 | Pneumonitis, myositis, hepatitis, fever, 'serum sickness', eosinophilia, seroconversion                                                                                | As for S. haematobium                                                                                               |  |
| Early eg                              | g deposition                                                                                                                                                           |                                                                                                                     |  |
| Months                                | Cystitis, haematuria                                                                                                                                                   | Colitis, granulomatous<br>hepatitis, acute portal<br>hypertension                                                   |  |
|                                       | Ectopic granulomatous lesions:<br>skin, CNS etc.<br>Immune complex<br>glomerulonephritis                                                                               | As for <i>S. haematobium</i>                                                                                        |  |
| Late egg                              | deposition                                                                                                                                                             |                                                                                                                     |  |
| Years                                 | Fibrosis and calcification of<br>ureters, bladder: bacterial<br>infection, calculi,<br>hydronephrosis, carcinoma<br>Pulmonary granulomas and<br>pulmonary hypertension | Colonic polyposis and<br>strictures, periportal<br>fibrosis, portal<br>hypertension<br>As for <i>S. haematobium</i> |  |



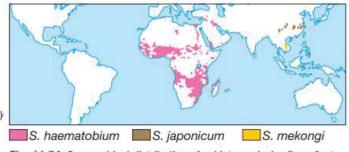




Fig. 11.54 Geographical distribution of schistosomiasis. From Cook GC, ed. Manson's tropical diseases, 20th edn. Saunders, Elsevier Inc.; 1995.



rig. 11.55 Ova of *Schistosoma naematobium* in urine. Note the terminal spike.

|                           | Clonorchiasis                                                 | Opisthorchiasis                          | Fascioliasis                                                               |
|---------------------------|---------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|
| Parasite                  | Clonorchis sinensis                                           | Opisthorchis felineus                    | Fasciola hepatica                                                          |
| Other mammalian hosts     | Dogs, cats, pigs                                              | Dogs, cats, foxes, pigs                  | Sheep, cattle                                                              |
| Mode of spread            | Ova in faeces, water                                          | As for C. sinensis                       | Ova in faeces on to wet pasture                                            |
| 1st intermediate host     | Snails                                                        | Snails                                   | Snails                                                                     |
| 2nd intermediate host     | Freshwater fish                                               | Freshwater fish                          | Encysts on vegetation                                                      |
| Geographical distribution | Far East, especially South China                              | Far East, especially North-east Thailand | Cosmopolitan, including UK                                                 |
| Pathology                 | Escherichia coli cholangitis,<br>abscesses, biliary carcinoma | As for C. sinensis                       | Toxaemia, cholangitis, eosinophilia                                        |
| Symptoms                  | Often symptom-free, recurrent jaundice                        | As for C. sinensis                       | Unexplained fever, tender liver, may be ectopic, e.g. subcutaneous fluke   |
| Diagnosis                 | Ova in stool or duodenal aspirate                             | As for C. sinensis                       | As for C. sinensis, also serology                                          |
| Prevention                | Cook fish                                                     | Cook fish                                | Avoid contaminated watercress                                              |
| Treatment                 | Praziquantel 25 mg/kg 3 times<br>daily for 2 days             | As for C. sinensis but for 1 day only    | Triclabendazole 10 mg/kg single dose;<br>repeat treatment may be required* |

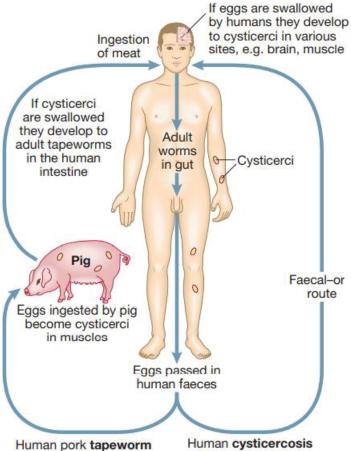
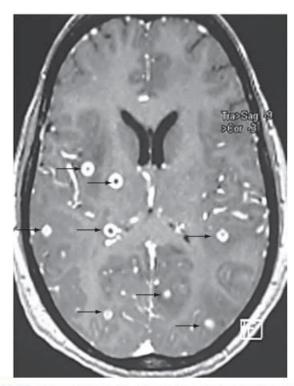




Fig. 11.56 Cysticercosis. Life cycle of Taenia solium.

infection results from

eating undercooked

pork containing cysticerci



**Fig. 11.57 Neurocysticercosis.** T2-weighted axial image of the brain showing multiple lesions of neurocysticercosis (large arrows show the largest lesions).

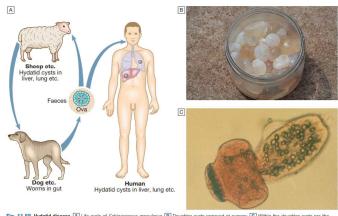



Fig. 11.58 Hydatid disease. A Life cycle of Echinococcus granulosus. B Daughter cysts removed at surgery. C Within the daughter cysts are the



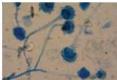
results from ingestion of

the tapeworm eggs as

a result of faecal

contamination of food




The Purest Ceftriaxone

Guarantees contamination free Triject by Robotic Manufacturing Process



#### Filamentous fungi (moulds)





Characterised by the production of elongated, cylindrical, often septate cells (hyphae) and conidia (spores)

#### Examples:

- Aspergillus spp. (A. fumigatus shown here)
- · Fusarium spp.
- Dermatophyte fungi (Tricophyton spp., Microsporum spp. etc.)
- Mucorales

#### Dimorphic fungi



Exist in filamentous (top) or yeast (bottom) form, depending on environmental conditions

#### Examples:

- Histoplasma capsulatum, Coccidioides immitis, Paracoccidioides brasiliensis (shown here), Blastomyces dermatidis
- Sporothrix schenkii
- Talaromyces marneffei
- Malassezia spp.

#### Yeasts





Characterised by the production of oval or round cells, which reproduce by binary fission (budding)

#### Examples:

- · Candida spp.\*
- Cryptococcus spp. (C. neoformans shown here)

Fig. 11.59 Classification of medically important fungi. Fungal classification is based on simple morphological characteristics. *Pneumocystis jirovecii* is morphologically distinct from other fungi and does not fit into this classification. \*Although *Candida albicans* exists in a number of forms, including filamentous (hyphae and pseudohyphae), it is generally encountered in its yeast form so is classified in this category. *Insets (dimorphic fungi) Courtesy of Beatriz Gomez and Angela Restrepo, CIB, Medellín, Colombia.* 



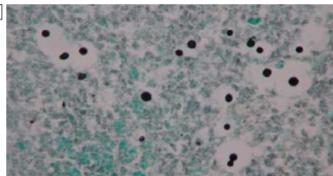



Fig. 11.60 Cryptococcal disease. A 23-year-old HIV-positive male developed headache and left-sided weakness. A MRI scan of the brain showed a space-occupying lesion (arrow) with surrounding oedema.

B Histopathological examination of the lesion stained with Grocott's silver stain showed encapsulated yeasts. Cryptococcus neoformans was cultured.



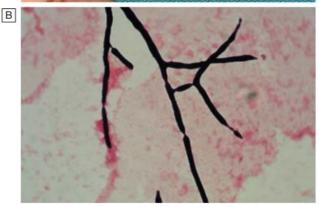



Fig. 11.61 Fusarium infection. A patient presented with fever and skin nodules after developing neutropenia secondary to haematopoietic stem cell transplantation and chemotherapy for relapsed leukaemia. Fusarium solani was cultured from skin lesions and blood cultures. A Tender, erythematous papules/nodules on upper arm. B Gram stain of Fusarium in blood culture medium.

# **ESKAYEF PHARMACEUTICALS LTD.**



# **Injectable Facility**

of the country achieves the most prestigious



# along with Oral Facility

# Also approved by













Ensures the highest standard of

Quality, Safety & Efficacy of medicines

for the people of Bangladesh & across the world



